Tập hợp tất cả các giá trị của tham số m để đồ thị hàm số y = x 3 + 3 m x 2 + 3 m 2 - 1 x + m 3 có hai điểm cực trị nằm về hai phía trục hoành khoảng (a,b). Giá trị của a+ 2b bằng
A. 4/3
B. 3/2
C. 1
D. 2/3
Biết S = (a,b) là tập hợp tất cả các giá trị của tham số m để đường thẳng y = m cắt đồ thị hàm số y = | \(x^2-4x+3\) | tại bốn điểm phân biệt . Tìm a + b
Tập hợp tất cả các giá trị của tham số m để đường thẳng y = − 2 x + m tiếp xúc với đồ thị hàm số y = x + 1 x − 1 là
A. m ∈ 7 ; − 1 .
B. m = 6.
C. m ∈ 6 ; − 1 .
D. m = − 1.
Tập hợp tất cả các giá trị thực của tham số m để đường thẳng y = − 2 x + m cắt đồ thị của hàm số y = x + 1 x − 2 tại hai điểm phân biệt là:
A. 5 − 2 3 ; 5 + 2 3
B. − ∞ ; 5 − 2 6 ∪ 5 + 2 6 ; + ∞
C. − ∞ ; 5 − 2 3 ∪ 5 + 2 3 ; + ∞
D. − ∞ ; 5 − 2 6 ∪ 5 + 2 6 ; + ∞
Câu 3 Để đồ thị hàm số \(y=-x^4-\left(m-3\right)x^2+m+1\) có điểm cực đạt mà không có điểm cực tiểu thì tất cả giá trị thực của tham số m là
Câu 4 Cho hàm số \(y=x^4-2mx^2+m\) .Tìm tất cả các giá trị thực của m để hàm số có 3 cực trị
Cho hàm số y = x 3 - 3 x 2 + m , với m là tham số. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để đồ thị hàm số có 5 điểm cực trị. Tổng tất cả các phần tử của tập S là
A. 3
B. 10
C. 6
D. 5
Đáp án C
Đồ thị hàm số đã cho có 5 điểm cực trị khi và chỉ khi phương trình y’ = 0 có 5 nghiệm phân biệt và y’ đổi dấu qua 5 nghiệm đó, điều này tương đương với x 3 - 3 x 2 + m có ba nghiệm phân biệt khác 0 và 2
Cho hàm số y = x 3 - 3 x 2 + m , với m là tham số. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để đồ thị hàm số có 5 điểm cực trị. Tổng tất cả các phần tử của tập S là
Tìm tập hợp tất cả các giá trị của tham số m để đồ thị hàm số y = 1 + x + 1 x 2 − m x − 3 m có đúng hai tiệm cận đứng ?
A. − ∞ ; − 12 ∪ 0 ; + ∞
B. 0 ; + ∞
C. 1 4 ; 1 2
D. 0 ; 1 2
Đáp án D
Đồ thị hàm số có 2 tiềm cận đứng
⇔ x ≥ − 1 x 2 − m x − 3 m = 0 có 2 nghiệm phân biệt.
⇔ x ≥ − 1 x 2 = m x + 3 ⇔ x ≥ − 1 m = x 2 x + 3 → f x = x 2 x + 3 có 2 nghiệm phân biệt
Xét hàm số f x = x 2 x + 3 trên − 1 ; + ∞ , có: f ' x = x x + 6 x + 3 2 ; f ' x = 0 ⇔ x = 0
Tính cách giác trị f − 1 = 1 2 ; f 0 = 0 và lim x → + ∞ f x = + ∞
Khi đó, yêu cầu * ⇔ m ∈ 0 ; 1 2 . Vậy m ∈ 0 ; 1 2 là giá trị cần tìm
Cho hàm số y = f (x) có đồ thị như hình bên. Gọi S là tập tất cả các giá trị nguyên dương của tham số m để hàm số y = f x - 2018 + m có 5 điểm cực trị. Tổng tất cả các giá trị của tập S bằng
A. 9
B. 7
C. 12
D. 18
Hình vẽ bên là đồ thị của hàm số y=f(x). Gọi S là tập hợp các giá trị nguyên dương của tham số m để hàm số y = f x − 1 + m có 5 điểm cực trị. Tổng giá trị tất cả các phần tử của S bằng
A. 12
B. 15
C. 18
D. 9
Hình vẽ bên là đồ thị của hàm số y = f(x). Gọi S là tập hợp các số nguyên dương của tham số m để hàm số y = |f(x – 1) + m| có 5 điểm cực trị. Tổng giá trị tất cả các phần tử của S bằng:
A. 12
B. 15
C. 18
D. 9
Đáp án A.
Phương pháp: Suy ra cách vẽ của đồ thị hàm số y = |f(x – 1) + m| và thử các trường hợp và đếm số cực trị của đồ thị hàm số. Một điểm được gọi là cực trị của hàm số nếu tại đó hàm số liên tục và đổi chiều.
Cách giải: Đồ thị hàm số y = f(x – 1) nhận được bằng cách tịnh tiến đồ thị hàm số y = f(x) sang phải 1 đơn vị nên không làm thay đổi tung độ các điểm cực trị
Đồ thị hàm số y = f(x – 1) + m nhận được bằng cách tịnh tiến đồ thị hàm số y = f(x – 1) lên trên m đơn vị nên ta có: yCD = 2 + m; yCT = –3 + m; yCT = –6 + m
Đồ thị hàm số y = |f(x – 1) + m| nhận được bằng cách từ đồ thị hàm số y = f(x – 1) + m lấy đối xứng phần đồ thị phía dưới trục hoành qua trục hoành và xóa đi phần đồ thị phía dưới trục hoành.
Để đồ thị hàm số có 5 cực trị
=>S = {3;4;5} => 3+4+5 = 12