Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phương Anh Đỗ
Xem chi tiết
huy Trịnh
31 tháng 7 2018 lúc 17:02

hình như đề bài bị sai số thì phải bạn ạ

mình giải cứ bị lệch số ấy

Kim Tuyến
Xem chi tiết
Tiểu Mèo Hoang
Xem chi tiết
Vươn
Xem chi tiết
Minh Ngọc
Xem chi tiết
Akai Haruma
17 tháng 4 2021 lúc 0:01

1.

\(\lim\limits_{x\to +\infty}(x^3+3x^2+2)=+\infty\)

2. 

\(\lim\limits_{x\to -\infty}\sqrt{4x^2-x+5}=\lim\limits_{x\to -\infty}-x.\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}=+\infty\) do $-x\to +\infty$ và $\lim\limits_{x\to -\infty}\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}=4>0$

 

Akai Haruma
17 tháng 4 2021 lúc 0:05

3.

\(\lim\limits_{x\to +\infty}(\sqrt{x^2-2x-1}-\sqrt{x^2-7x+3})=\lim\limits_{x\to +\infty}\frac{x^2-2x-1-(x^2-7x+3)}{\sqrt{x^2-2x-1}+\sqrt{x^2-7x+3}}\)

\(=\lim\limits_{x\to +\infty}\frac{5x-4}{\sqrt{x^2-2x-1}+\sqrt{x^2-7x+3}}=\lim\limits_{x\to +\infty}\frac{5-\frac{4}{x}}{\sqrt{1-\frac{2}{x}-\frac{1}{x^2}}+\sqrt{1-\frac{7}{x}+\frac{3}{x^2}}}\)

\(=\frac{5}{1+1}=\frac{5}{2}\)

 

Kim Tuyến
Xem chi tiết
Lấp La Lấp Lánh
2 tháng 10 2021 lúc 17:55

a) \(đk:\left\{{}\begin{matrix}x\ge0\\\sqrt{x}\ne2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

b) \(x=3+2\sqrt{2}\Rightarrow\sqrt{x}=\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)

\(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}=\dfrac{2\left(\sqrt{2}+1\right)-1}{\sqrt{2}+1-2}=\dfrac{2\sqrt{2}+1}{\sqrt{2}-1}\)

c) \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}=\dfrac{1}{2}\)

\(\Leftrightarrow4\sqrt{x}-2=\sqrt{x}-2\Leftrightarrow3\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\)

d) \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}>2\)

\(\Leftrightarrow2\sqrt{x}-1>2\sqrt{x}-4\Leftrightarrow-1>-4\left(đúng\forall x\right)\)

e) \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}=\dfrac{2\left(\sqrt{x}-2\right)}{\sqrt{x}-2}+\dfrac{3}{\sqrt{x}-2}=2+\dfrac{3}{\sqrt{x}-2}\in Z\)

\(\Rightarrow\sqrt{x}-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

Do \(x\ge0\)

\(\Rightarrow x\in\left\{1;9;25\right\}\)

phan thế mạnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 6 2022 lúc 23:39

\(A=\dfrac{\sqrt{x}}{\sqrt{x}-2}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\)

Để A<0 thì \(2< \sqrt{x}< 3\)

=>4<x<9

TR ᗩ NG ²ᵏ⁶
Xem chi tiết
Yeutoanhoc
21 tháng 6 2021 lúc 8:26

`a)(2sqrtx-9)/(x-5sqrtx+6)-(sqrtx+3)/(sqrtx-2)-(2sqrtx+1)/(3-sqrtx)(x>=0,x ne 4,x ne 9)`

`=(2sqrtx-9)/(x-5sqrtx+6)-(sqrtx+3)/(sqrtx-2)+(2sqrtx+1)/(sqrtx-3)`

`=(2sqrtx-9+(sqrtx-3)(sqrtx+3)+(2sqrtx+1)(sqrtx-2))/(x-5sqrtx+6)`

`=(2sqrtx-9+x-9+2x-3sqrtx-2)/(x-5sqrtx+6)`

`=(3x-sqrtx-20)/

nguyễn thị thảo vân
Xem chi tiết
Đỗ Ngọc Hải
6 tháng 3 2016 lúc 20:27

Xét \(\frac{8\sqrt{41}}{\sqrt{45+4\sqrt{41}}+\sqrt{45-4\sqrt{41}}}=\frac{8\sqrt{41}}{\sqrt{\left(\sqrt{41}+2\right)^2}+\sqrt{\left(\sqrt{41}-2\right)^2}}=\frac{8\sqrt{41}}{\sqrt{41}+2+\sqrt{41}-2}=\frac{8\sqrt{41}}{2\sqrt{41}}=4\)
Phương trình trên tương đương:
x3+4x+5=0
<=>x(x2-1)+5(x+1)=0
<=>x(x-1)(x+1)+5(x+1)=0
<=>(x+1)(x2-x+5)=0
<=>x+1=0 hoặc x2-x+5=0(vô nghiệm)
<=>x=-1
Vậy pt trên có nghiệm là x=-1

phan tuấn anh
6 tháng 3 2016 lúc 20:19

x=-1 nha 

Thần Đồng Đất Việt
6 tháng 3 2016 lúc 20:25

Bài này đi thi vio mk cũng gặp ..

    bằng 1 ak
 

๛Ňɠũ Vị Čáէツ
Xem chi tiết
Full Moon
3 tháng 11 2018 lúc 20:00

1) ĐKXĐ: \(x\ge0\)

\(\sqrt{x}=2\sqrt{2}\Rightarrow x=8\left(tmđkxđ\right)\)

2) ĐKXĐ: \(x\ge-1\)

\(\sqrt{\frac{x+1}{2}}=\frac{\sqrt{5}}{2}\)

\(\Leftrightarrow\frac{x+1}{2}=\frac{5}{4}\)

\(\Leftrightarrow2x+2=5\Leftrightarrow x=\frac{3}{2}\left(TMĐKXĐ\right)\)

An Hoà
3 tháng 11 2018 lúc 20:01

1, 

\(\sqrt{x}=2\sqrt{2}\)

=> \(\left(\sqrt{x}\right)=\left(2\sqrt{2}\right)^2\)

=> \(x=8\)

2.

\(\sqrt{\frac{x+1}{2}}=\frac{\sqrt{5}}{2}\)

=> \(\left(\sqrt{\frac{x+1}{2}}\right)=\left(\frac{\sqrt{5}}{2}\right)^2\)

=>  \(\frac{x+1}{2}=\frac{5}{4}\)

=> 4 ( x + 1 ) = 5.2

=> 4x + 4 = 10

=> 4x = 6

=. x = \(\frac{3}{2}\)