giải hệ pt \(\frac{1}{\sqrt{x}}+\frac{y}{x}=\frac{2\sqrt{x}}{y}+2\)
\(16x^4-24x^2+8\sqrt{3-2y}-3\)
Giải hệ phương trình
\(\hept{\begin{cases}16x^4-24x^2+8\sqrt{3-2y}=3\\\frac{1}{\sqrt{x}}+\frac{y}{x}=\frac{2\sqrt{x}}{y}+2\end{cases}}\)
giải hệ pt :
\(\hept{\begin{cases}3x^2+6xy+9y^2+\left(x+2y\right)^2\sqrt{x+2y}-3\left(x+2y\right)\sqrt{x+2y}-4\left(x+2y\right)+4\sqrt{x+2y}=0\\\left(\frac{\sqrt[3]{x^2-y^2}}{\sqrt[4]{x}}+\sqrt[4]{\frac{x}{y}}\right)^{2017}+\left(\sqrt[3]{\frac{x}{y}}-\sqrt[4]{\frac{y}{x}}\right)^{2018}=1\end{cases}}\)
Bài 1: Giải pt: 16x^4-72x^3+16x-28=16\(\sqrt{x-2}\)
Bài 2: Giải hệ : \(x^2+y^2=\frac{1}{2}\)và \(4x\left(x^3-x^2+x+1\right)=y^2+2xy-1\)
Bài 3: Giải hệ: \(\frac{1}{\sqrt{x}}+\sqrt{2-\frac{1}{y}}=2\)và \(\frac{1}{\sqrt{y}}+\sqrt{2-\frac{1}{x}}=2\)
Bài 4: Tìm nghiệm nguyên dương:
\(\hept{\begin{cases}x+y=z\\x^3+y^3=z^2\end{cases}}\)
giải giúp mình mấy phương trình này với
a, \(16x^4+5=6\sqrt[3]{4x^3+x}\)
b,\(\sqrt{\text{-}4x^4y^2+16x^2y+9}-\sqrt{x^2y^2\text{-}2y^2}=2\left(x^2+\frac{1}{x^2}\right)\)
c,\(\sqrt{x^2+2y^2\text{-}6x+4y+11}+\sqrt{x^2+3y^2+2x+6y+4}=4\)
d, \(2\sqrt[4]{27x^2+24x+\frac{28}{3}}=1+\sqrt{\frac{27}{2}x+6}\)
e, \(\frac{2\sqrt{2}}{\sqrt{x+1}}+\sqrt{x}=\sqrt{x+9}\)
giải hệ pt:
\(\left\{{}\begin{matrix}\frac{1}{\sqrt{x}}-\frac{\sqrt{x}}{y}=x^2+xy-2y^2\\\left(\sqrt{x+3}-\sqrt{y}\right)\left(1+\sqrt{x^2+3x}\right)=3\end{matrix}\right.\)
ĐKXĐ x ; y > 0
(1) \(\Rightarrow\left(y-x\right)\left(\frac{1}{\sqrt{x}y}+x+2xy\right)=0\)
\(\Rightarrow x=y\)
\(\Rightarrow...\)
#Kaito#
1. Giải pt và hệ pt sau:
a) \(\left\{{}\begin{matrix}2x-y=5\\x+y=4\end{matrix}\right.\) b)\(16x^5-8x^3+x=0\)
2. Rút gọn biểu thức:
\(A=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}}{4}+\frac{1}{\sqrt{5}-1}\)
\(B=\frac{4}{3+\sqrt{5}}-\frac{8}{1+\sqrt{5}}+\frac{15}{\sqrt{5}}\)
Ai giải nhanh với thanksss !!
1)
a) \(\left\{{}\begin{matrix}2x-y=5\\x+y=4\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}2x-y+x+y=5+4\\x+y=4\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}3x=9\\x+y=4\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
Vậy (x;y)=(3;1)
b) \(16x^5-8x^3+x=0\Leftrightarrow x\left(16x^4-8x^2+1\right)=0\Leftrightarrow x\left[\left(4x^2\right)^2-2.4x^2.1+1^2\right]=0\Leftrightarrow x\left(4x^2-1\right)^2=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\4x^2-1=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=\frac{\pm1}{2}\end{matrix}\right.\)
Vậy S={\(-\frac{1}{2};0;\frac{1}{2}\)}
2)
A=\(\frac{\sqrt{\left(\sqrt{5}-1\right)^2}}{4}+\frac{1}{\sqrt{5}-1}=\frac{\sqrt{5}-1}{4}+\frac{\sqrt{5}+1}{5-1}=\frac{\sqrt{5}-1}{4}+\frac{\sqrt{5}+1}{4}=\frac{\sqrt{5}-1+\sqrt{5}+1}{4}=\frac{2\sqrt{5}}{4}=\frac{\sqrt{5}}{2}\)
B=\(\frac{4}{3+\sqrt{5}}-\frac{8}{1+\sqrt{5}}+\frac{15}{\sqrt{5}}=\frac{4\left(3-\sqrt{5}\right)}{9-5}-\frac{8\left(1-\sqrt{5}\right)}{1-5}+3\sqrt{5}=\frac{4\left(3-\sqrt{5}\right)}{4}-\frac{8\left(\sqrt{5}-1\right)}{4}+3\sqrt{5}=3-\sqrt{5}-2\sqrt{5}+2+3\sqrt{5}=5\)
B1 Rút gọn
a)\(\sqrt{6+2\sqrt{5}}-\sqrt{29-12\sqrt{2}}\)
b)\(\frac{2}{x^2y^2}\sqrt{\frac{3\left(x+y\right)^2}{2}}\left(x\ge0;y\ge0;x\ne y\right)\)
c)\(\frac{2}{2a-1}\sqrt{5a^2\left(1-4a+4a^2\right)}\left(a>\frac{1}{2}\right)\)
B2 giải pt
\(\sqrt{3-x}+3\sqrt{12-4x}-5\sqrt{48-16x}=-39\)
HELP ME!!!!
B1. Giải pt
\(\frac{x}{\sqrt{x^2+1}}+\frac{1}{2x^2}=2\)
B2. Giải hệ pt:
\(\hept{\begin{cases}x+y-\sqrt{xy}=3\\\sqrt{x+1}+\sqrt{y+1}=4\end{cases}}\)
Bạn vào link này để xem bài làm của mik nha
large_1594515830440.jpg (768×1024)
Mik ko gửi đc link , ib riêng nhé
Câu 1:
ĐK: x khác 0
TH1: x > 0
\(\frac{x}{\sqrt{x^2+1}}+\frac{1}{2x^2}=2\)
<=> \(\frac{1}{\sqrt{1+\frac{1}{x^2}}}+\frac{1}{2x^2}=2\)
Đặt: \(\sqrt{1+\frac{1}{x^2}}=t>1\)ta có phương trình:
\(\frac{1}{t}+\frac{t^2-1}{2}=2\)
<=> \(t^3-5t+2=0\)
<=> \(\)\(t=2\) ( có 3 nghiệm; loại 2 nghiệm vì t > 1 )
Với t = 2 ta có: \(\sqrt{1+\frac{1}{x^2}}=2\Leftrightarrow\frac{1}{x^2}=3\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{\sqrt{3}}\left(tm\right)\\x=-\frac{1}{\sqrt{3}}\left(l\right)\end{cases}}\)
TH2: x < 0
\(\frac{x}{\sqrt{x^2+1}}+\frac{1}{2x^2}=2\)
<=> \(\frac{-1}{\sqrt{1+\frac{1}{x^2}}}+\frac{1}{2x^2}=2\)
Đặt: \(\sqrt{1+\frac{1}{x^2}}=t>1\)
Ta có phương trình: \(-\frac{1}{t}+\frac{t^2-1}{2}=2\)<=> \(t=1+\sqrt{2}\)
khi đó: \(\sqrt{1+\frac{1}{x^2}}=1+\sqrt{2}\)
<=> \(1+\frac{1}{x^2}=1+2\sqrt{2}+2\)
<=> \(x^2=\frac{1}{2\sqrt{2}+2}\)
<=> \(x=-\sqrt{\frac{1}{2\sqrt{2}+2}}\)( thỏa mãn) hoặc \(x=\sqrt{\frac{1}{2\sqrt{2}+2}}\) loại
Kết luận:...
Giải hệ phương trình
a, \(\left\{{}\begin{matrix}\sqrt[4]{x^3-1}+\sqrt{x}=3\\x^2+y^3=82\end{matrix}\right.\) d, \(\left\{{}\begin{matrix}x-\frac{1}{x}=y-\frac{1}{y}\\2y=x^3+1\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}\sqrt{x+\frac{1}{y}}+\sqrt{x+y-3}=3\\2x+y+\frac{1}{y}=8\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}\frac{3}{x^2}=2x+y\\\frac{3}{y^2}=2y+x\end{matrix}\right.\)
Bài 2:
ĐK: ..........
Đặt $\sqrt{x+\frac{1}{y}}=a; \sqrt{x+y-3}=b$ $(a,b\geq 0$)
HPT \(\Leftrightarrow \left\{\begin{matrix} a+b=3\\ a^2+b^2+3=8\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=3\\ a^2+b^2=5\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} a+b=3\\ (a+b)^2-2ab=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=3\\ ab=2\end{matrix}\right.\)
Áp dụng định lý Vi-et đảo thì $a,b$ là nghiệm của pt $X^2-3X+2=0$
$\Rightarrow (a,b)=(2,1); (1,2)$
Nếu $(a,b)=(2,1)$
\(\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=4\\ x+y-3=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=4\\ x+y=4\end{matrix}\right.\Rightarrow y=\frac{1}{y}\Rightarrow y=\pm 1\)
$y=1\rightarrow x=3$
$y=-1\rightarrow y=5$
Nếu $(a,b)=(1,2)$
\(\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=1\\ x+y-3=4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=1\\ x+y=7\end{matrix}\right.\Rightarrow y-\frac{1}{y}=6\)
\(\Rightarrow y^2-6y-1=0\Rightarrow y=3\pm \sqrt{10}\)
Nếu $y=3+\sqrt{10}\rightarrow x=4-\sqrt{10}$
Nếu $y=3-\sqrt{10}\rightarrow x=4+\sqrt{10}$
Vậy...........
Bài 1:
Đặt $\sqrt[4]{y^3-1}=a; \sqrt{x}=b$ $(a,b\geq 0$)
Khi đó hệ PT trở thành:
\(\left\{\begin{matrix} a+b=3\\ b^4+a^4+1=82\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=3\\ a^4+b^4=81\end{matrix}\right.\)
Có: \(a^4+b^4=81\)
\(\Leftrightarrow (a^2+b^2)^2-2a^2b^2=81\)
\(\Leftrightarrow [(a+b)^2-2ab]^2-2a^2b^2=81\)
\(\Leftrightarrow (9-2ab)^2-2a^2b^2=81\)
\(\Leftrightarrow 2a^2b^2-36ab=0\)
\(\Leftrightarrow ab(ab-18)=0\Rightarrow \left[\begin{matrix} ab=0\\ ab=18\end{matrix}\right.\)
Nếu $ab=0$. Kết hợp với $a+b=3$ suy ra $(a,b)=(3,0); (0,3)$
$\Rightarrow (x,y)=(0, \sqrt[4]{82}); (9, 1)$
Nếu $ab=18$. Kết hợp với $a+b=3$ và định lý Vi-et đảo suy ra $a,b$ là nghiệm của pt: $X^2-3X+18=0$
Dễ thấy pt này vô nghiệm nên loại
Vậy......
Bài 2:
ĐK: ..........
Đặt $\sqrt{x+\frac{1}{y}}=a; \sqrt{x+y-3}=b$ $(a,b\geq 0$)
HPT \(\Leftrightarrow \left\{\begin{matrix} a+b=3\\ a^2+b^2+3=8\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=3\\ a^2+b^2=5\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} a+b=3\\ (a+b)^2-2ab=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=3\\ ab=2\end{matrix}\right.\)
Áp dụng định lý Vi-et đảo thì $a,b$ là nghiệm của pt $X^2-3X+2=0$
$\Rightarrow (a,b)=(2,1); (1,2)$
Nếu $(a,b)=(2,1)$
\(\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=4\\ x+y-3=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=4\\ x+y=4\end{matrix}\right.\Rightarrow y=\frac{1}{y}\Rightarrow y=\pm 1\)
$y=1\rightarrow x=3$
$y=-1\rightarrow y=5$
Nếu $(a,b)=(1,2)$
\(\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=1\\ x+y-3=4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=1\\ x+y=7\end{matrix}\right.\Rightarrow y-\frac{1}{y}=6\)
\(\Rightarrow y^2-6y-1=0\Rightarrow y=3\pm \sqrt{10}\)
Nếu $y=3+\sqrt{10}\rightarrow x=4-\sqrt{10}$
Nếu $y=3-\sqrt{10}\rightarrow x=4+\sqrt{10}$
Vậy...........