Tìm tất cả các giá trị thực của m để hàm số y = x 3 3 - ( m - 2 ) x 2 + ( 4 m - 8 ) x + m + 1 đạt cực trị tại các điểm x1, x2 sao cho x 1 < - 2 < - x 2
A. m ≥ 1
B. m > 1 2
C. m ≤ 2
D. m < 3 2
Câu 1 : Tìm tất cả các giá trị của tham số thực m để hàm số \(y=mx^3-2mx^2+\left(m-2\right)x+1\) không có cực trị
Câu 2: Tìm tất cả các giá trị thực của tham số m để hàm số \(y=\left(m-1\right)x^4-2\left(m-3\right)x^2+1\) không có cực đại
Câu 3 Để đồ thị hàm số \(y=-x^4-\left(m-3\right)x^2+m+1\) có điểm cực đạt mà không có điểm cực tiểu thì tất cả giá trị thực của tham số m là
Câu 4 Cho hàm số \(y=x^4-2mx^2+m\) .Tìm tất cả các giá trị thực của m để hàm số có 3 cực trị
1,Tìm tất cả các giá trị của m để hàm số y=2x^2 - 3mx + m - 2 trên x-1 đạt cực đại tại điểm x=2. 2, Tìm tất cả các giá trị của m để hàm số y= x^2 + mx +1 trên x+m đạt cực tiểu tại điểm x=2. 3, Tìm tất cả các giá trị của m để hàm số y=x^2 -(2m-1)x+3 trên x+2 có cực đại và cực tiểu . 4, Tìm m để hso y=x^2 +m(m^2-1)x-m^4+1 trên x-m có cực đại và cực tiểu. Mọi người giúp em với ạ . Em cảm ơn ạ !
Cho hàm số y = x 3 - 6 x 2 + 3 ( m + 2 ) x - m - 6 . Tìm tất cả các giá trị thực của m để hàm số có 2 cực trị cùng dấu
A. - 23 4 < m < 2 .
B. - 15 4 < m < 2 .
C. - 21 4 < m < 2 .
D. - 17 4 < m < 2 .
Chọn D
Hàm số có 2 điểm cực trị x 1 , x 2
Chia y cho y’ ta được :
Điểm cực trị tương ứng :
Với x 1 + x 2 = 4 x 1 x 2 = m + 2 nên y 1 y 2 = ( m - 2 ) 2 ( 4 m + 17 )
Hai cực trị cùng dấu ⇔ y 1 y 2 > 0
Kết hợp đk : - 17 4 < m < 2
Tìm tất cả các giá trị thực của m để hàm số y=mx^4 - (m+1)x^2 + 2m -1 có 3 cực trị
\(m=0\) không thỏa mãn
Với \(m\ne0\):
\(y'=4mx^3-2\left(m+1\right)x=2x\left(2mx^2-\left(m+1\right)\right)\)
Hàm có 3 cực trị khi:
\(\dfrac{m+1}{m}>0\Rightarrow\left[{}\begin{matrix}m< -1\\m>0\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}m< -1\\m>0\end{matrix}\right.\)
Tìm tất cả các giá trị thực của m để hàm số y = x 3 - 2 x 2 + ( m + 3 ) x - 1 không có cực trị?
A. m ≥ - 8 3 .
B. m > - 5 3 .
C. m ≥ - 5 3 .
D. m ≤ - 8 3 .
Chọn C
[Phương pháp tự luận]
y ' = 3 x 2 - 4 x + m + 3
Hàm số không có cực trị
1. Tìm tất cả các giá trị thực của tham số m để hàm số y= mx - sin3x đồng biến trên khoảng ( trừ vô cùng ; cộng vô cùng) 2. Tìm tất cả các giá trị thực của tham số m để hàm số y = x + mcosx đồng biến trên khoảng( trừ vô cùng ; cộng vô cùng)
1.
\(y'=m-3cos3x\)
Hàm đồng biến trên R khi và chỉ khi \(m-3cos3x\ge0\) ; \(\forall x\)
\(\Leftrightarrow m\ge3cos3x\) ; \(\forall x\)
\(\Leftrightarrow m\ge\max\limits_{x\in R}\left(3cos3x\right)\)
\(\Leftrightarrow m\ge3\)
2.
\(y'=1-m.sinx\)
Hàm đồng biến trên R khi và chỉ khi:
\(1-m.sinx\ge0\) ; \(\forall x\)
\(\Leftrightarrow1\ge m.sinx\) ; \(\forall x\)
- Với \(m=0\) thỏa mãn
- Với \(m< 0\Rightarrow\dfrac{1}{m}\le sinx\Leftrightarrow\dfrac{1}{m}\le\min\limits_R\left(sinx\right)=-1\)
\(\Rightarrow m\ge-1\)
- Với \(m>0\Rightarrow\dfrac{1}{m}\ge sinx\Leftrightarrow\dfrac{1}{m}\ge\max\limits_R\left(sinx\right)=1\)
\(\Rightarrow m\le1\)
Kết hợp lại ta được: \(-1\le m\le1\)
Tìm tất cả các giá trị thực của tham số m để hàm số y=(m-3)x-(2m+1)cosx nghịch biến trên R.
A.
B. không có m
C.
D.
Tìm tất cả các số thực m để giá trị nhỏ nhất của hàm số y = 2 - 2msinx - (m+1)cosx bằng -3.
A. m = 2
B. m = - 1 ± 10 5
C. m = - 1 ± 241 5
D. m = 2, m = - 12 5
Câu 8 : Tìm tất cả các giá trị thực của tham số m để hàm số \(y=\dfrac{1}{3}x^3-mx^2+\left(m+1\right)x-1\) đạt cực đại tại x=\(-\)2