Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Hải
Xem chi tiết
Nguyễn Linh Chi
24 tháng 4 2020 lúc 7:39

Gọi D là giao điểm của hai đường phân giác trong góc B và góc C

+) Trên BC lấy điểm M sao cho: AM vuông BD tại H 

=> Đường thẳng AM \(\perp\)BH => AM có dạng: 2x + y + a = 0 

mà A ( 2; -1) \(\in\)AM => 2.2 + ( -1) + a = 0 <=> a = -3

=> phương trình đt: AM : 2x + y - 3 = 0 

H là giao của AM và BD => Tọa độ điểm H là nghiệm hệ: \(\hept{\begin{cases}x-2y+1=0\\2x+y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)=> H ( 1; 1) 

Lại có: BH vừa là đường cao vừa là đường phân giác \(\Delta\)ABM => \(\Delta\)ABM cân =>  H là trung điểm AM 

=> \(\hept{\begin{cases}x_M=2x_H-x_A=2.1-2=0\\y_M=2y_H-y_B=2.1-\left(-1\right)=3\end{cases}}\)=> M ( 0; 3 ) 

+) Trên BC lấy lấy điêm N sao cho AN vuông CD tại K 

Làm tương tự như trên ta có: 

AN có dạng: x - y + b = 0 mà A thuộc AN => 2 + 1 + b = 0 => b = - 3 

K là giao điểm của AN và CD => K ( 0; -3 ) 

K là trung điểm AN => N ( -2; -5 )

=> Đường thẳng BC qua điểm M  và N 

\(\overrightarrow{MN}\left(-2;-8\right)\)=> VTPT của BC là: \(\overrightarrow{n}\left(8;-2\right)\)

=> Phương trình BC : \(8\left(x-0\right)+\left(-2\right)\left(y-3\right)=0\)

<=> 4x -y + 3 = 0 

Vậy: BC : 4x - y + 3 = 0

Khách vãng lai đã xóa
Nguyễn Linh Chi
24 tháng 4 2020 lúc 7:51

A B C H K D M N

Khách vãng lai đã xóa
Nguyễn Xuân	Mong
Xem chi tiết
Nguyễn Linh Chi
29 tháng 4 2020 lúc 14:05

Hướng dẫn: 

Qua đường phân giác trong góc B lấy điểm B' đối xứng với A => B' thuộc BC  và tìm được tọa độ B' 

Qua đường phân giác trong góc C lấy điểm C' đối xứng với A => C' thuộc BC và tìm được tọa độ C' 

=> Phương trình BC đi qua B' và C' .

Khách vãng lai đã xóa
Vũ Mạnh Huy
Xem chi tiết
Hạ Băng Băng
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 3 2021 lúc 11:10

Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}4x-y+3=0\\x-2y+1=0\end{matrix}\right.\) \(\Rightarrow B\left(-\dfrac{5}{7};\dfrac{1}{7}\right)\)

Tọa độ C là nghiệm: \(\left\{{}\begin{matrix}4x-y+3=0\\x+y+3=0\end{matrix}\right.\) \(\Rightarrow C\left(-\dfrac{6}{5};-\dfrac{9}{5}\right)\)

Phương trình đường thẳng qua C và vuông góc phân giác góc B:

\(2\left(x+\dfrac{6}{5}\right)+1\left(y+\dfrac{9}{5}\right)=0\Leftrightarrow2x+y+\dfrac{21}{5}=0\)

Gọi E là hình chiếu của C lên phân giác góc B \(\Rightarrow\left\{{}\begin{matrix}2x+y+\dfrac{21}{5}=0\\x-2y+1=0\end{matrix}\right.\) \(\Rightarrow E\left(-\dfrac{47}{25};-\dfrac{11}{25}\right)\)

Gọi F là điểm đối xứng E qua phân giác góc B \(\Rightarrow\) F thuộc AB đồng thời E là trung điểm CF \(\Rightarrow F\left(-\dfrac{64}{25};\dfrac{23}{25}\right)\)

\(\Rightarrow\overrightarrow{BF}\Rightarrow\) pt BF (chính là phương trình AB)

Làm tương tự với AC

Thuận Ngọc
Xem chi tiết
Chee My
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 4 2019 lúc 17:01

Đáp án B

Do AB và BC cắt nhau tại B nên toa độ điểm B là nghiệm hệ phương trình

Do đó: B( 2; -1)

Tương tự: tọa độ điểm C( 1; 9)

PT các đường phân giác góc A là:

Đặt T1(x; y) = 2x- 6y+ 7 và T2= 12x+ 4y-3  ta có:

T1(B). T1(C) < 0 và T2(B) T2(C) >0.

Suy ra B và C nằm khác phía so với đường thẳng 2x-6y+7= 0 và cùng phía so với đường thẳng: 12x+ 4y- 3= 0.

Vậy phương trình đường phân giác trong góc A là: 2x- 6y+ 7= 0.

Cindy
Xem chi tiết
Kuramajiva
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 4 2021 lúc 17:28

1.

\(\overrightarrow{OA}=\left(1;3\right)\Rightarrow OA=\sqrt{10}\)

Gọi I là trung điểm OA \(\Rightarrow I\left(\dfrac{1}{2};\dfrac{3}{2}\right)\)

Phương trình đường tròn đường kính OA nhận I là trung điểm và có bán kính \(R=\dfrac{OA}{2}=\dfrac{\sqrt{10}}{2}\):

\(\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{3}{2}\right)^2=\dfrac{5}{2}\)

b.

Gọi 2 trung tuyến là BN và CM (với M, N là trung điểm AB và AC)

B thuộc BN nên tọa độ có dạng: \(\left(b;1\right)\)

M là trung điểm AB \(\Rightarrow M\left(\dfrac{b+1}{2};2\right)\)

M thuộc CM nên tọa độ thỏa mãn:

\(\dfrac{b+1}{2}-4+1=0\Rightarrow b=5\Rightarrow B\left(5;1\right)\)

\(\Rightarrow\overrightarrow{AB}=\left(4;-2\right)\Rightarrow\) pt AB: \(\left\{{}\begin{matrix}x=1+2t\\y=3-t\end{matrix}\right.\)

Gọi G là trọng tâm tam giác ABC \(\Rightarrow\) G là giao điểm BN và CM

Tọa độ G thỏa mãn: \(\left\{{}\begin{matrix}y-1=0\\x-2y+1=0\end{matrix}\right.\) \(\Rightarrow G\left(1;1\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x_C=3x_G-x_A-x_B=-3\\y_C=3y_G-y_A-y_B=-1\end{matrix}\right.\) \(\Rightarrow C\left(-3;-1\right)\)

Biết tọa độ C, A, B bạn tự viết pt 2 cạnh còn lại

Nguyễn Việt Lâm
23 tháng 4 2021 lúc 17:37

2.

AB vuông góc với trung trực của AB nên nhận (2;-3) là 1 vtpt và (3;2) là 1 vtcp

Phương trình tham số:

\(\left\{{}\begin{matrix}x=-1+3t\\y=-3+2t\end{matrix}\right.\)

Phương trình tổng quát:

\(2\left(x+1\right)-3\left(y+3\right)=0\Leftrightarrow2x-3y-7=0\)

b. Câu này tìm trung điểm của AB hay BC nhỉ? Ta chỉ có thể tìm được trung điểm BC sau khi hoàn thành câu c (nghĩa là thứ tự bài toán bị ngược)

Gọi N là trung điểm AB \(\Rightarrow\) tọa độ N thỏa mãn:

\(\left\{{}\begin{matrix}2x-3y-7=0\\3x+2y-4=0\end{matrix}\right.\)  \(\Rightarrow N\left(2;-1\right)\)

N là trung điểm AB \(\Rightarrow\left\{{}\begin{matrix}x_B=2x_N-x_A=5\\y_B=2y_N-y_A=1\end{matrix}\right.\) \(\Rightarrow B\left(5;1\right)\)

G là trọng tâm tam giác nên: \(\left\{{}\begin{matrix}x_C=3x_G-x_A-x_B=8\\y_C=3y_G-y_A-y_B=-4\end{matrix}\right.\) \(\Rightarrow C\left(8;-4\right)\)

\(\Rightarrow M\left(\dfrac{13}{2};-\dfrac{3}{2}\right)\)

Nguyễn Việt Lâm
23 tháng 4 2021 lúc 17:41

Câu 3 đơn giản bạn tự làm (AC vuông góc BB' nên nhận (1;-1) là 1 vtpt, AB vuông góc CC' nên nhận (4;1) là 1 vtpt).

Câu b thì B là giao điểm AB và BB', C là giao điểm AC và CC'

Câu 4.

\(x^2+16y^2=16\Leftrightarrow\dfrac{x^2}{16}+\dfrac{y^2}{1}=1\Rightarrow\left\{{}\begin{matrix}a=4\\b=1\end{matrix}\right.\) \(\Rightarrow c^2=15\Rightarrow c=\sqrt{15}\)

Các đỉnh có tọa độ lần lượt: \(\left(4;0\right);\left(-4;0\right);\left(0;1\right);\left(0;-1\right)\)

Tiêu điểm: \(F_1\left(-\sqrt{15};0\right);F_2\left(\sqrt{15};0\right)\)

Độ dài trục lớn: \(2a=8\)

Độ dài trục bé: \(2b=2\)