Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 10 2019 lúc 12:01

Chọn B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 10 2018 lúc 2:51

Đáp án C

Bảng biến thiên của hàm số f(x) là

Hàm số  f x  là hàm số chẵn trên  ℝ nên đồ thị của hàm số nhận trục tung làm trục đối xứng. Do đó phương trình  f ( x ) + m = 0 có bốn nghiệm thực phân biệt khi và chỉ khi phương trình f ( x ) + m = 0 có hai nghiệm dương phân biệt hay phương trình f ( x ) = - m  có hai nghiệm dương phân biệt

⇔ 1 < - m < e 4 ⇔ - e 4 < m < - 1

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 5 2017 lúc 9:22

Chọn đáp án D

Số nghiệm của phương trình f ( x ) = m  bằng

số giao điểm của đồ thị hàm số y = f ( x )  với

đường thẳng  y = m

 

Từ bảng biến thiên suy ra phương trình có 3 nghiệm phân biệt khi   − 2 < m < 4.

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 8 2018 lúc 5:30

Đáp án A

Để phương trình f(x)=m có 3 nghiệm phân biệt thì đường thẳng y=m cắt đồ thị hàm số tại 3 điểm phân biệt.

Dựa vào bảng biến thiên ta thấy -2<m<1

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 10 2018 lúc 11:34

Đáp án B

Phương trình f(x) = f(m) có ba nghiệm phân biệt  ⇔ - 2 < f ( m ) < 2 ⇒ - 1 < m < 3 m ≠ 0 ; 2

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 12 2017 lúc 14:54

Đáp án A

Phương pháp giải:

Phương trình có nhiều nhất n nghiệm thì xảy ra các trường hợp có n nghiệm, có n – 1 nghiệm, … , vô nghiệm, dựa vào bảng biến thiên để biện luận số giao điểm của hai đồ thị hàm số

Lời giải: 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 10 2019 lúc 11:37

Đáp án là D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 4 2019 lúc 16:21

Chọn D.

Số nghiệm của phương trình f(x) =  m bằng số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m.

Dựa vào đồ thị, điều kiện để phương trình có 4 nghiệm phân biệt là -4 < m < 0.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 4 2017 lúc 14:10

Đáp án C

Phương pháp:

Số nghiệm của phương trình f(x) = m bằng số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m

Cách giải:

Số nghiệm của phương trình f(x) = m(*) bằng số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m

⇒ Để (*) có 3 nghiệm thực phân biệt thì m ∈ (-1;3)