Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
min yoongi
Xem chi tiết
Liên Quân AD
4 tháng 10 2018 lúc 20:34

Thời gian có hạn copy cái này hộ mình vào google xem nha :

https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi

Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....

Có 500 giải nhanh nha đã có 200 người nhận rồi 

Phạm Tuấn Đạt
4 tháng 10 2018 lúc 20:38

1;\(x^3+3x=3x^2+1\)

\(\Rightarrow x^3+3x-3x^2-1=0\)

\(\Rightarrow x^3-3x^2+3x-1=0\)

\(\Rightarrow\left(x-1\right)^3=0\)

\(\Rightarrow x=1\)

2;\(x^2-3x\)

\(=x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}\)

\(=\left(x-\frac{3}{2}\right)^2+\left(-\frac{9}{4}\right)\ge-\frac{9}{4}\left[\left(x-\frac{3}{2}\right)^2\ge0\right]\)

Vậy Min \(x^2-3x=-\frac{9}{4}< =>x=\frac{3}{2}\)

Phát Lê
Xem chi tiết
Đỗ Thanh Tùng
2 tháng 7 2016 lúc 17:29

GTNN:

\(\Leftrightarrow x^2+2\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}+1\)

\(\Leftrightarrow x^2+2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy Min của biểu thức trên =3/4 khi x+1/2=0 => x=-1/2

GTLL:

\(\Leftrightarrow-3\left(x^2-\frac{7}{3}x-\frac{1}{3}\right)\)

\(\Leftrightarrow-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{49}{36}-\frac{1}{3}\right)\)

\(\Leftrightarrow-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{61}{36}\right)\)

\(\Leftrightarrow-3\left[\left(x-\frac{7}{6}\right)^2-\frac{61}{36}\right]\)

\(\Leftrightarrow-3\left(x-\frac{7}{6}\right)^2+\frac{61}{12}\le\frac{61}{12}\)

Vậy Max của biểu thức trên = 61/12 khi x-7/6=0 => x=7/6

nha . cảm ơn . chúc bạn học tốt

Bùi Phương Thu
Xem chi tiết
cr7 Dương
18 tháng 3 2018 lúc 20:20

mình không làm đc

Anh Trần
22 tháng 11 2018 lúc 20:36

Không spam nha. Chương trình game xin tặng chương trình học online. Nhằm mục đích game được nhiều người chơi.

Thay mặt người đào tạo chương trình hôm nay : Có 200 suất học bỗng cho những học sinh tích cực hoạt động từ bây giờ ( Mỗi suất học bỗng là 100k). Nhận thưởng bằng cách vào google tìm kiếm.

Link như sau vào google hoặc cốc cốc để tìm kiếm:

https://lazi.vn/quiz/d/17912/game-lien-quan-mobile-ra-doi-vao-ngay-thang-nam-nao

Copy cũng được nha

Bạn vào nick này hack nick mình thu ib dưới vs nha giúp mk chuyện này

Trần Hoàng Sơn
Xem chi tiết
Nguyễn Trung Hiếu
Xem chi tiết
ngonhuminh
4 tháng 12 2016 lúc 17:21

XD moi x

\(yx^2+y=x^2+3x+5\Leftrightarrow\left(y-1\right)x^2-3x+\left(y-5\right)=0\)

dat y-1=a cho gon

\(ax^2-3x+\left(a-4\right)=0\)(1)

tim DK a de phuong trinh tren(1) co nghiem

a=0=>-3x-4=0=> x=4/3

voi a \(\ne0\)(1) phuong trinh bac 2

=>delta(x)=3^2-4a.(a-4)\(\ge0\) 

\(\Leftrightarrow9-4a^2+16a\ge0\Leftrightarrow4a^2-16a-9\le0\)

delta"(a)=4^2-4.(-9)=16+36=52=4.13

\(\orbr{\begin{cases}a_1=\frac{4-2\sqrt{13}}{4}=1-\frac{\sqrt{13}}{2}\\a_2=\frac{4+2\sqrt{13}}{4}=1+\frac{\sqrt{13}}{2}\end{cases}}\)

\(\left(1-\frac{\sqrt{13}}{2}\right)\le a\le1+\frac{\sqrt{13}}{2}\)

\(1-\frac{\sqrt{13}}{2}\le y-1\le1+\frac{\sqrt{13}}{2}\)

\(2-\frac{\sqrt{13}}{2}\le y\le2+\frac{\sqrt{13}}{2}\)

Bảo Đặng
Xem chi tiết
Nguyễn Minh Phương
23 tháng 9 2016 lúc 17:53

A= x2-3x+9/4-5/4=(x-3/2)2+(-5/4)

do (x-3/2)lớn hơn hoặc bằng 0với mọi x nên a lớn hơn hoặc bằng -5/4 với mọi x

dấu '=' xảy ra khi (x-3/2)2=0<=>x=3/2

vậy minA=-5/4 khi x=3/2

Nguyễn Quang Anh Vũ
Xem chi tiết
Thảo Nguyễn
Xem chi tiết
Nghiêm Hoàng Nam
9 tháng 1 2022 lúc 10:56

banhqualeu

Xyz OLM
9 tháng 1 2022 lúc 15:36

Ta có : x - y = 3 - m 

=> y = x - 3 + m (1) 

Lại có y = 3x - m - 3 (2) 

Từ (1) và (2) => 2y = 4x - 6

=> y = 2x - 3

Khi đó P = (2x - 3)2 - 3x2 

= x2 - 12x + 9 \(=\left(x-6\right)^2-27\ge-27\)

Dấu "=" xảy ra <=> x = 6 

Khi x = 6 => y = 9 => m = 6

Vậy khi m = 6 thì PMin = -27 

Thùy Dương
Xem chi tiết
Phạm Duy Tuấn
13 tháng 1 2015 lúc 21:31

Ta sử dụng hằng đẳng thức thứ ba , ta có: \(\left(x^2-3x-1\right)\left(x^2-3x+1\right)=\left[\left(x^2-3x\right)-1\right]\left[\left(x^2-3x\right)+1\right]\)

\(=\left(x^2-3x\right)^2-1\) vì \(\left(x^2-3x\right)^2\ge0\Rightarrow\left(x^2-3x\right)^2-1\ge-1\)

Vậy \(\left(x^2-3x-1\right)\left(x^2-3x+1\right)_{min}=-1\) tại \(x=3\).