Tìm giá trị nhỏ nhất của : 3x^2+x-1
tìm x : x^3 + 3x = 3x^2 +1
tìm giá trị lớn nhất hoặc nhỏ nhất của biểu thức sau : x^2 - 3x
Thời gian có hạn copy cái này hộ mình vào google xem nha :
https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi
Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....
Có 500 giải nhanh nha đã có 200 người nhận rồi
1;\(x^3+3x=3x^2+1\)
\(\Rightarrow x^3+3x-3x^2-1=0\)
\(\Rightarrow x^3-3x^2+3x-1=0\)
\(\Rightarrow\left(x-1\right)^3=0\)
\(\Rightarrow x=1\)
2;\(x^2-3x\)
\(=x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}\)
\(=\left(x-\frac{3}{2}\right)^2+\left(-\frac{9}{4}\right)\ge-\frac{9}{4}\left[\left(x-\frac{3}{2}\right)^2\ge0\right]\)
Vậy Min \(x^2-3x=-\frac{9}{4}< =>x=\frac{3}{2}\)
tìm giá trị nhỏ nhất của biểu thức x2+x+1
tìm giá trị lớn nhất của biểu thức -3x2+7x+1
GTNN:
\(\Leftrightarrow x^2+2\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}+1\)
\(\Leftrightarrow x^2+2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy Min của biểu thức trên =3/4 khi x+1/2=0 => x=-1/2
GTLL:
\(\Leftrightarrow-3\left(x^2-\frac{7}{3}x-\frac{1}{3}\right)\)
\(\Leftrightarrow-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{49}{36}-\frac{1}{3}\right)\)
\(\Leftrightarrow-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{61}{36}\right)\)
\(\Leftrightarrow-3\left[\left(x-\frac{7}{6}\right)^2-\frac{61}{36}\right]\)
\(\Leftrightarrow-3\left(x-\frac{7}{6}\right)^2+\frac{61}{12}\le\frac{61}{12}\)
Vậy Max của biểu thức trên = 61/12 khi x-7/6=0 => x=7/6
nha . cảm ơn . chúc bạn học tốt
Tìm giá trị của x để biểu thức sau đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó?
A = x^2 – 4√3x – 3
Không spam nha. Chương trình game xin tặng chương trình học online. Nhằm mục đích game được nhiều người chơi.
Thay mặt người đào tạo chương trình hôm nay : Có 200 suất học bỗng cho những học sinh tích cực hoạt động từ bây giờ ( Mỗi suất học bỗng là 100k). Nhận thưởng bằng cách vào google tìm kiếm.
Link như sau vào google hoặc cốc cốc để tìm kiếm:
https://lazi.vn/quiz/d/17912/game-lien-quan-mobile-ra-doi-vao-ngay-thang-nam-nao
Copy cũng được nha
Bạn vào nick này hack nick mình thu ib dưới vs nha giúp mk chuyện này
tìm x
1/4 - 5/2 x |3x - 1/5|= 2/3 x |3x -1/5| - 2/3
tìm giá trị nhỏ nhất hoặc giá trị lớn nhất của biểu thức sau
A=|4x - 1/4|+2016
B=2014-|3x - 1/5|
Tìm giá trị lớn nhất và giá trị nhỏ nhất của :
\(y=\frac{x^2+3x+5}{x^2+1}\)
XD moi x
\(yx^2+y=x^2+3x+5\Leftrightarrow\left(y-1\right)x^2-3x+\left(y-5\right)=0\)
dat y-1=a cho gon
\(ax^2-3x+\left(a-4\right)=0\)(1)
tim DK a de phuong trinh tren(1) co nghiem
a=0=>-3x-4=0=> x=4/3
voi a \(\ne0\)(1) phuong trinh bac 2
=>delta(x)=3^2-4a.(a-4)\(\ge0\)
\(\Leftrightarrow9-4a^2+16a\ge0\Leftrightarrow4a^2-16a-9\le0\)
delta"(a)=4^2-4.(-9)=16+36=52=4.13
\(\orbr{\begin{cases}a_1=\frac{4-2\sqrt{13}}{4}=1-\frac{\sqrt{13}}{2}\\a_2=\frac{4+2\sqrt{13}}{4}=1+\frac{\sqrt{13}}{2}\end{cases}}\)
\(\left(1-\frac{\sqrt{13}}{2}\right)\le a\le1+\frac{\sqrt{13}}{2}\)
\(1-\frac{\sqrt{13}}{2}\le y-1\le1+\frac{\sqrt{13}}{2}\)
\(2-\frac{\sqrt{13}}{2}\le y\le2+\frac{\sqrt{13}}{2}\)
tìm giá trị nhỏ nhất của A = x^2 - 3x + 1
A= x2-3x+9/4-5/4=(x-3/2)2+(-5/4)
do (x-3/2)2 lớn hơn hoặc bằng 0với mọi x nên a lớn hơn hoặc bằng -5/4 với mọi x
dấu '=' xảy ra khi (x-3/2)2=0<=>x=3/2
vậy minA=-5/4 khi x=3/2
Tìm giá trị nhỏ nhất của hàm số y = ( 3x^2 + x + 1) / 3x -2 với x > 2/3
Tìm m để 2 đường thẳng x-y=3-m và y=3x-m-3 cắt nhau tại 1 điểm B(x;y) để P=y^2-3x^2 đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
Ta có : x - y = 3 - m
=> y = x - 3 + m (1)
Lại có y = 3x - m - 3 (2)
Từ (1) và (2) => 2y = 4x - 6
=> y = 2x - 3
Khi đó P = (2x - 3)2 - 3x2
= x2 - 12x + 9 \(=\left(x-6\right)^2-27\ge-27\)
Dấu "=" xảy ra <=> x = 6
Khi x = 6 => y = 9 => m = 6
Vậy khi m = 6 thì PMin = -27
Tìm giá trị nhỏ nhất của đa thức : ( x 2 - 3x + 1 ) ( x 2 - 3x -1 )
Ta sử dụng hằng đẳng thức thứ ba , ta có: \(\left(x^2-3x-1\right)\left(x^2-3x+1\right)=\left[\left(x^2-3x\right)-1\right]\left[\left(x^2-3x\right)+1\right]\)
\(=\left(x^2-3x\right)^2-1\) vì \(\left(x^2-3x\right)^2\ge0\Rightarrow\left(x^2-3x\right)^2-1\ge-1\)
Vậy \(\left(x^2-3x-1\right)\left(x^2-3x+1\right)_{min}=-1\) tại \(x=3\).