Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Việt

Những câu hỏi liên quan
tuan anh le
Xem chi tiết
`ღ´Ngốc`ღ´
10 tháng 8 2017 lúc 10:42

\(\left(x-3\right)^3+\left(x+3\right)^3=0\)

\(\Leftrightarrow x^3-9x^2+27x-27+x^3+9x^2+27x+27=0\)\(\Leftrightarrow2x^3+54x^2=0\)

\(\Leftrightarrow x^2\left(2x+54\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\2x+54=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-27\end{matrix}\right.\)

\(b,\left(x+1\right)^3-\left(x-1\right)^3=0\)

\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1=0\)\(\Leftrightarrow6x^2+2=0\)

\(\Leftrightarrow6x^2=-2\)

\(\Leftrightarrow x^2=-3\) ( vô lí)

Vậy pt vô nghiệm

\(c,x^2-4x+3=0\)

\(\Leftrightarrow x^2-3x-x+3=0\)

\(\Leftrightarrow x\left(x-3\right)-\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

\(d,4x^2+4x+1=0\)

\(\Leftrightarrow\left(2x+1\right)^2=0\)

\(\Rightarrow2x+1=0\)

\(\Leftrightarrow2x=-1\Rightarrow x=-\dfrac{1}{2}\)

\(e,\left(x+2\right)^2-\left(x+3\right)^2=0\)

\(\Leftrightarrow\left(x+2-x-3\right)\left(x+2+x+3\right)=0\)

\(\Leftrightarrow-\left(2x+5\right)=0\)

\(\Leftrightarrow-2x-5=0\)

\(\Leftrightarrow-2x=5\Rightarrow x=-\dfrac{5}{2}\)

Học tốt nha you <3

tuan anh le
Xem chi tiết
`ღ´Ngốc`ღ´
10 tháng 8 2017 lúc 10:42

\(\left(x-3\right)^3+\left(x+3\right)^3=0\)

\(\Leftrightarrow x^3-9x^2+27x-27+x^3+9x^2+27x+27=0\)\(\Leftrightarrow2x^3+54x^2=0\)

\(\Leftrightarrow x^2\left(2x+54\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\2x+54=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-27\end{matrix}\right.\)

\(b,\left(x+1\right)^3-\left(x-1\right)^3=0\)

\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1=0\)\(\Leftrightarrow6x^2+2=0\)

\(\Leftrightarrow6x^2=-2\)

\(\Leftrightarrow x^2=-3\) ( vô lí)

Vậy pt vô nghiệm

\(c,x^2-4x+3=0\)

\(\Leftrightarrow x^2-3x-x+3=0\)

\(\Leftrightarrow x\left(x-3\right)-\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

\(d,4x^2+4x+1=0\)

\(\Leftrightarrow\left(2x+1\right)^2=0\)

\(\Rightarrow2x+1=0\)

\(\Leftrightarrow2x=-1\Rightarrow x=-\dfrac{1}{2}\)

\(e,\left(x+2\right)^2-\left(x+3\right)^2=0\)

\(\Leftrightarrow\left(x+2-x-3\right)\left(x+2+x+3\right)=0\)

\(\Leftrightarrow-\left(2x+5\right)=0\)

\(\Leftrightarrow-2x-5=0\)

\(\Leftrightarrow-2x=5\Rightarrow x=-\dfrac{5}{2}\)

Học tốt nha you <3

tuan anh le
Xem chi tiết
`ღ´Ngốc`ღ´
10 tháng 8 2017 lúc 10:48

\(\left(x-3\right)^3+\left(x+3\right)^3=0\)

\(\Leftrightarrow x^3-9x^2+27x-27+x^3+9x^2+27x+27=0\)\(\Leftrightarrow2x^3+54x^2=0\)

\(\Leftrightarrow x^2\left(2x+54\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\2x+54=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-27\end{matrix}\right.\)

\(b,\left(x+1\right)^3-\left(x-1\right)^3=0\)

\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1=0\)\(\Leftrightarrow6x^2+2=0\)

\(\Leftrightarrow6x^2=-2\)

\(\Leftrightarrow x^2=-3\) ( vô lí)

Vậy pt vô nghiệm

\(c,x^2-4x+3=0\)

\(\Leftrightarrow x^2-3x-x+3=0\)

\(\Leftrightarrow x\left(x-3\right)-\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

\(d,4x^2+4x+1=0\)

\(\Leftrightarrow\left(2x+1\right)^2=0\)

\(\Rightarrow2x+1=0\)

\(\Leftrightarrow2x=-1\Rightarrow x=-\dfrac{1}{2}\)

\(e,\left(x+2\right)^2-\left(x+3\right)^2=0\)

\(\Leftrightarrow\left(x+2-x-3\right)\left(x+2+x+3\right)=0\)

\(\Leftrightarrow-\left(2x+5\right)=0\)

\(\Leftrightarrow-2x-5=0\)

\(\Leftrightarrow-2x=5\Rightarrow x=-\dfrac{5}{2}\)

Học tốt nha you <3

Lisadaisy
Xem chi tiết
xKraken
18 tháng 2 2020 lúc 11:21

Mấy câu này khá giống nhau nhé anh (câu 1 giống câu 4 và 5, cấu 2 giống câu 3) =)))

Câu 1: 2x - 7 + (x - 14) = 0

<=> 3x -21 = 0

<=> 3x = 21 => x = 7

Câu 2:

x2 - 6x = 0 <=> x.(x - 6) = 0 => \(\orbr{\begin{cases}x=0\\x-6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=6\end{cases}}\)

Chúc anh học tốt !!!

Khách vãng lai đã xóa

Câu 1, 2 có người làm rồi nên mik làm tiếp cho mấy câu tiếp. Cứ áp dụng A.B = 0 => A = 0 hoặc B = 0

3; ( x - 3 )( 16 - 4x ) = 0

=> x - 3 = 0 hoặc 16 - 4x = 0

=> x = 3 hoặc x = 4

Vậy x = 3 hoặc x = 4.

4; ( x - 3 ) - ( 16 - 4x ) = 0

=> x - 3 - 16 + 4x = 0

=> ( x + 4x ) - ( 3 + 16 ) = 0

=> 5x - 19 = 0

=> x = 19/5

Vậy x = 19/5

5; ( x + 3 ) + ( 16 - 4x ) = 0

=> x + 3 + 16 - 4x = 0

=> ( x - 4x ) + ( 16 + 3 ) = 0

=> 3x + 19 = 0

=> x = 19/3

Vậy x = 19/3

Khách vãng lai đã xóa
Bầu Trời Rộng Lớn
Xem chi tiết
Đoàn Thị Thanh hải
15 tháng 1 2017 lúc 17:39

a) \(^{x^3}\) - 7x+6=0

\(\Leftrightarrow\) \(^{x^3}\) - x-6x+6=0

\(\Leftrightarrow\) \(\left(x^3-x\right)\) - \(\left(6x-6\right)\) =0

\(\Leftrightarrow\) x\(\left(x^2-1\right)\) - 6\(\left(x-1\right)\) =0

\(\Leftrightarrow\) x\(\left(x+1\right)\)\(\left(x-1\right)\) - 6\(\left(x-1\right)\) =0

\(\Leftrightarrow\) \(\left(x-1\right)\) \(\left[x-6\left(x+1\right)\right]\) =0

\(\Leftrightarrow\) \(\left(x-1\right)\) \(\left(6-5x\right)\) =0

\(\Leftrightarrow\) \(\left[\begin{matrix}x-1=0\\6-5x=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[\begin{matrix}x=1\\5x=-6\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[\begin{matrix}x=1\\x=-\frac{6}{5}\end{matrix}\right.\)

Những câu sau dùng phương pháp phân tích đa thức thành nhân tử nhé!

Nguyễn Cao Việt
14 tháng 1 2017 lúc 14:30

x4- 4x3+3x2+4x-4= 0

(x-1)(x+1)(x-2)2=0

x=1 ;x=-1;x=2

☘Tiểu Tuyết☘
13 tháng 1 2017 lúc 23:02

a)x^3 - 7x - 6

= x^3 + x^2 - x^2 - 6x - x - 6

= (x^3 + x^2) - (x^2 + x) - (6x + 6)
= x^2(x + 1) - x(x + 1) - 6(x + 1)

= (x + 1)(x^2 - x - 6)

= (x + 1)(x^2 - 3x + 2x - 6)
= (x + 1){(x^2 - 3x) + (2x - 6)}

= (x + 1){(x(x - 3) + 2(x - 3)}
= (x + 1)(x - 3)(x + 2)

Nhi Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 11 2023 lúc 5:45

a: \(x^3-4x^2-x+4=0\)

=>\(\left(x^3-4x^2\right)-\left(x-4\right)=0\)

=>\(x^2\left(x-4\right)-\left(x-4\right)=0\)

=>\(\left(x-4\right)\left(x^2-1\right)=0\)

=>\(\left[{}\begin{matrix}x-4=0\\x^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x^2=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;1;-1\right\}\)

b: Sửa đề: \(x^3+3x^2+3x+1=0\)

=>\(x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=0\)

=>\(\left(x+1\right)^3=0\)

=>x+1=0

=>x=-1

c: \(x^3+3x^2-4x-12=0\)

=>\(\left(x^3+3x^2\right)-\left(4x+12\right)=0\)

=>\(x^2\cdot\left(x+3\right)-4\left(x+3\right)=0\)

=>\(\left(x+3\right)\left(x^2-4\right)=0\)

=>\(\left(x+3\right)\left(x-2\right)\left(x+2\right)=0\)

=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\\x=-2\end{matrix}\right.\)

d: \(\left(x-2\right)^2-4x+8=0\)

=>\(\left(x-2\right)^2-\left(4x-8\right)=0\)

=>\(\left(x-2\right)^2-4\left(x-2\right)=0\)

=>\(\left(x-2\right)\left(x-2-4\right)=0\)

=>(x-2)(x-6)=0

=>\(\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)

 

Nguyễn Đức Nhân
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 3 2020 lúc 10:55

a) Ta có: \(x^2-9x+20=0\)

\(\Leftrightarrow x^2-5x-4x+20=0\)

\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\)

Vậy: x∈{4;5}

b) Ta có: \(x^3-4x^2+5x=0\)

\(\Leftrightarrow x\left(x^2-4x+5\right)=0\)(1)

Ta có: \(x^2-4x+5\)

\(=x^2-4x+4+1=\left(x-2\right)^2+1\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-2\right)^2+1\ge1>0\forall x\)

hay \(x^2-4x+5>0\forall x\)(2)

Từ (1) và (2) suy ra x=0

Vậy: x=0

c) Sửa đề: \(x^2-2x-15=0\)

Ta có: \(x^2-2x-15=0\)

\(\Leftrightarrow x^2+3x-5x-15=0\)

\(\Leftrightarrow x\left(x+3\right)-5\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)

Vậy: x∈{-3;5}

d) Ta có: \(\left(x^2-1\right)^2=4x+1\)

\(\Leftrightarrow x^4-2x^2+1-4x-1=0\)

\(\Leftrightarrow x^4-2x^2-4x=0\)

\(\Leftrightarrow x\left(x^3-2x-4\right)=0\)

\(\Leftrightarrow x\left(x^3+2x^2+2x-2x^2-4x-4\right)=0\)

\(\Leftrightarrow x\cdot\left[x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\right]=0\)

\(\Leftrightarrow x\cdot\left(x^2+2x+2\right)\cdot\left(x-2\right)=0\)(3)

Ta có: \(x^2+2x+2\)

\(=x^2+2x+1+1=\left(x+1\right)^2+1\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+1\right)^2+1\ge1>0\forall x\)

hay \(x^2+2x+2>0\forall x\)(4)

Từ (3) và (4) suy ra

\(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy: x∈{0;2}

Khách vãng lai đã xóa
nobita
Xem chi tiết
kudo shinichi
4 tháng 8 2018 lúc 20:34

\(4x^2+4x-3=0\)

\(\left[\left(2x\right)^2+2.2x.1+1\right]-4=0\)

\(\left(2x+1\right)^2-2^2=0\)

\(\left(2x+1-2\right).\left(2x+1+2\right)=0\) 

\(\left(2x-1\right).\left(2x+3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x-1=0\\2x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{3}{2}\end{cases}}}\)

Vậy \(\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{3}{2}\end{cases}}\)

\(x^4-3x^3-x+3=0\)

\(x^3.\left(x-3\right)-\left(x-3\right)=0\)

\(\left(x-3\right).\left(x^3-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\x^3-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}}\)

Vậy \(\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

\(x^2.\left(x-1\right)-4x^2+8x-4=0\)

\(x^2.\left(x-1\right)-\left[\left(2x\right)^2-2.2x.2+2^2\right]=0\)

\(x^2.\left(x-1\right)-\left(2x-2\right)^2=0\)

\(x^2.\left(x-1\right)-4.\left(x-1\right)^2=0\)

\(\left(x-1\right).\left[x^2-4.\left(x-1\right)\right]=0\)

\(\left(x-1\right).\left[x^2-2.x.2+2^2\right]=0\)

\(\left(x-1\right).\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}}\)

Vậy \(\begin{cases}x=1\\x=2\end{cases}\)

Tham khảo nhé~

nobita
Xem chi tiết
Ngo Tung Lam
Xem chi tiết
๖Fly༉Donutღღ
11 tháng 9 2017 lúc 21:16

a)  \(x^3\)\(-\)\(\frac{1}{4}x\)\(=\)\(0\)

\(x\left(x^2-\frac{1}{4}\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x^2-\frac{1}{4}=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x^2=0,5^2\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=+-0,5\end{cases}}\)

Vậy .............................

b)  \(\left(2x-1\right)^2\)\(-\)\(\left(x+3\right)^2\)\(=\)\(0\)

\(\left(2x-1+x+3\right)\left(2x-1-x-3\right)=0\)

\(\left(3x+2\right)\left(x-4\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}3x+2=0\\x-4=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}3x=-2\\x=4\end{cases}}\)\(\orbr{\begin{cases}x=\frac{-2}{3}\\x=4\end{cases}}\)

Vậy ................................

c)  \(x^2\)\(\left(x-3\right)\)\(+\)\(12\)\(-\)\(4x\)\(=\)\(0\)

\(x^2\)\(\left(x-3\right)\)\(-\)\(4\)\(\left(x-3\right)\)\(=\)\(0\)

\(\left(x^2-4\right)\left(x-3\right)\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x^2\\x-3=0\end{cases}-4=0}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x^2\\x=3\end{cases}=2^2}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=+-2\\x=3\end{cases}}\)

๖ACE✪Hoàngミ★Việtツ
11 tháng 9 2017 lúc 21:06

a)\(x^3-\frac{1}{4}x=0\)

\(\Leftrightarrow x\left(x^2-\frac{1}{4}\right)=0\)

\(\Leftrightarrow x\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x-\frac{1}{2}=0\\x+\frac{1}{2}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}}\)

๖ACE✪Hoàngミ★Việtツ
11 tháng 9 2017 lúc 21:09

b)\(\left(2x-1\right)^2-\left(x+3\right)^2=0\)

\(\Leftrightarrow\left(2x-1-x-3\right)\left(2x-1+x+3\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(3x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\3x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-\frac{2}{3}\end{cases}}}\)