Cho số phức z thỏa mãn ( 3 + i ) z = 13 − 9 i . Tìm tọa độ của điểm M biểu diễn z.
A. M = ( − 3 ; 4 )
B. M = ( 3 ; − 4 )
C. M = ( − 3 ; − 4 )
D. M = ( 1 ; − 3 )
Cho số phức z thỏa mãn (3+i)z = 13 - 9i. Tìm tọa độ của điểm M biểu diễn z.
A. M = (-3;4)
B. M = (3;-4)
C. M = (-3;-4)
D. M = (1;-3)
Đáp án B
= 3 - 4i
Vậy tọa độ của M(3;-4)
Cho số phức z thỏa mãn phương trình 3 + 2 i z + z - i 2 = 4 + i . Tìm tọa độ điểm M biểu diễn số phức z.
A. M - 1 ; 1
B. M - 1 ; - 1
C. M 1 ; 1
D. M 1 ; - 1
Cho số phức z thỏa mãn (2 - i)z = (2 + i)(1 - 3i). Gọi M là điểm biểu diễn của z. Khi đó tọa độ điểm M là.
A. M(3;1)
B. M(3;-1)
C. M(1;3)
D. M(1;-3)
Đáp án B
Dùng CASIO rút gọn z = 2 + i 1 - 3 i 2 - i = 3 - i → M 3 ; - 1 .
Cho số phức z thỏa mãn (2-i)z = (2+i)(1-3i). Gọi M là điểm biểu diễn của z. Khi đó tọa độ điểm M là.
A. M(3;1)
B. M(3;-1)
C. M(1;3)
D. M(1;-3)
Trong mặt phẳng tọa độ Oxy, tìm tập hợp các điểm M biểu diễn số phức z, thỏa mãn: 2 z - i = z - z + 2 i .
A. Parabol y = 1 4 x 2
B. Parabol y = - 1 4 x 2
C. Parabol y = 1 2 x 2
D. Parabol y = x 2
Trong mặt phẳng tọa độ Oxy, tìm tập hợp các điểm M biểu diễn số phức z, thỏa mãn: 2 z - i = z - z ¯ + 2 i
Cho số phức z thỏa mãn iz + 2 - i = 0. Khoảng cách từ điểm biểu diễn của z trên mặt phẳng tọa độ Oxy đến điểm M(3;-4) là:
A. 2 5
B. 13
C. 2 10
D. 2 2
Cho số phức z thỏa mãn: z ( 1 + 2 i ) - z ¯ ( 2 - 3 i ) = - 4 + 12 i . Tìm tọa độ điểm M biểu diễn số phức z.
Cho số phức z thỏa mãn |z|=2. Biết rằng tập hợp các điểm biểu diễn số phức w=3-2i+(2-i)z là một đường tròn. Tìm tọa độ tâm I của đường tròn đó?
A.I(3;-2)
B. I(-3;2)
C.I(3;2)
D.I(-3;-2)