Cho lăng trụ tam giác đều ABC.A'B'C' có A B = a , A A ' = a 2 . Khoảng cách giữa A 'B và CC' bằng
A. a 3 2
B. a 3
C. a
D. a 6 3
Cho lăng trụ tam giác đều ABC.A'B'C' có AB=a, AA'= a 2 . Khoảng cách giữa A 'B và CC' bằng
Cho hình lăng trụ đứng A B C . A ' B ' C ' , biết đáy ABC là tam giác đều cạnh a. Khoảng cách từ tâm O của tam giác ABC đến mặt phẳng (A 'BC) bằng a 6 . Thể tích khối lăng trụ ABC.A'B'C' là:
A. 3 a 3 2 16
B. 3 a 3 2 8
C. 3 a 3 2 8
D. 3 a 3 2 4
Cho hình lăng trụ đứng ABC.A'B'C' có đáy là tam giác đều cạnh a. Cạnh bên AA'=a 2 . Thể tích khối lăng trụ ABC.A'B'C' là:
A. V = a 3 6 4
B. V = a 3 6 2
C. V = a 3 6 12
D. V = a 6 4
Cho khối lăng trụ tam giác đều ABC.A'B'C' có cạnh đáy là a và khoảng cách từ A đến mặt phẳng (A'BC) bằng a 2 . Tính thể tích của khối lăng trụ .
A. 3 2 a 3 12
B. 3 a 3 2 16
C. 2 a 3 16
Đáp án B
Gọi M là trung điểm BC, kẻ đường cao AH trong Δ A ' A M . Khi đó AH là khoảng cách từ A tới A ' B C ⇒ A H = a 2 .
AM là đường cao trong tam giác đều ⇒ A M = a 3 2 , d t A B C = a 2 3 4
Ta có:
Cho khối lăng trụ tam giác đều ABC.A'B'C' có cạnh đáy là a và khoảng cách từ A đến mặt phẳng (A'BC) bằng a 2 . Tính thể tích của khối lăng trụ .
A. 3 2 a 3 12
B. 3 a 3 2 16
C. 2 a 3 16
D. 3 a 3 2 48
Đáp án B
Gọi M là trung điểm BC kẻ đường cao Ah trong Δ A ' A M . Khi đó AH là khoảng cách từ A tới A ' B C ⇒ A H = a 2 .
AM là đường cao trong tam giác đều ⇒ A M = a 3 2 , d t A B C = a 2 3 4
Ta có 1 A ' A 2 = 1 A H 2 − 1 A M 2 = 4 a 2 − 4 3 a 2 = 8 3 a 2 ⇒ A ' A = a 6 4
Vậy V A ' B ' C ' . A B C = A ' A . d t A B C = a 6 4 . a 2 3 4 = 3 a 3 2 16
Cho hình lăng trụ A B C . A ' B ' C ' có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của A’ lên (ABC) trùng với tâm O của tam giác ABC, thể tích của khối lăng trụ A B C . A ' B ' C ' bằng 3 a 3 . Khoảng cách giữa hai đường thẳng AA' và BC bằng
A. a
B. 7 a 6
C. 6 a 7
D. a 3 2
Cho hình lăng trụ tam giác đều ABC.A'B'C' có tất cả các cạnh đều bằng a. Khoảng cách từ A đến mặt phẳng (A'BC) bằng:
A. a 3 4
B. a 21 7
C. a 2 2
D. a 6 4
Chọn B.
Gọi M là trung điểm của BC, AM= a 3 2 , BC ⊥ (A'AM)
Kẻ AH ⊥ A'M, suy ra AH ⊥ (A'BC) và AH=d(A,(A'BC))
Xét tam giác A'AM vuông tại A, ta có:
1 A H 2 = 1 A A ' 2 + 1 A M 2 ⇒ A H = a 21 7
Vậy d(A,(A'BC))= a 21 7
Cho hình lăng trụ tam giác đều A B C . A ' B ' C ' có tất cả các cạnh đều bằng a. Khoảng cách từ A đến mặt phẳng A ' B C bằng:
A. a 3 4
B. a 21 7
C. a 2 2
D. a 6 4
Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của điểm A' lên mặt phẳng (ABC) trùng với trọng tâm tam giác ABC. Biết khoảng cách giữa hai đường thẳng AA' và BC bằng a√3/4. Tính thể tích V của khối lăng trụ ABC.A'B'C'
A. V = a 3 3 6
B. V = a 3 3 3
C. V = a 3 3 24
D. V = a 3 3 12