Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = x 4 − 2 m x 2 có ba điểm cực trị tạo thành một tam giác có diện tích nhỏ hơn 1.
A. m<1
B. 0 < m < 4 3
C. m>0
D. 0 < m < 1
Câu 3 Để đồ thị hàm số \(y=-x^4-\left(m-3\right)x^2+m+1\) có điểm cực đạt mà không có điểm cực tiểu thì tất cả giá trị thực của tham số m là
Câu 4 Cho hàm số \(y=x^4-2mx^2+m\) .Tìm tất cả các giá trị thực của m để hàm số có 3 cực trị
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = x 2 + x - 2 x 2 - 2 x + m có ba đường tiệm cận
A. m<1
B. m ≠ 1 và m ≠ - 8
C. m ≤ 1 và m ≠ - 8
D. m < 1 và m ≠ - 8
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = x - 1 x 2 + x + m cắt trục hoành tạo ba điểm phân biệt.
A. m > - 1 4
B. m > 1 4 v à m ≠ 2
C. m < 1 4
D. m < 1 4 v à m ≠ - 2
Cho hàm số y=f(x) có đồ thị như hình vẽ bên. Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = f x + m có 5 điểm cực trị.
A. m ≤ − 1
B. m < − 1
C. m ≥ − 1
D. m > − 1
Cho hàm số y=f(x) có đồ thị như hình vẽ bên. Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = f x + m có 5 điểm cực trị.
A. m ≤ − 1
B. m < − 1
C. m ≥ − 1
D. m > 1
Đáp án B.
Hàm số y = f x + m là một hàm số chẵn nên đồ thị đối xứng qua trục Oy. Mặt khác y = f x + m = f x + m ∀ x ≥ 0 . Ta có phép biến đổi từ đồ thị hàm số y = f x thành đồ thị hàm số y = f x + m :
* Nếu m > 0:
- Bước 1: Tịnh tiến đồ thị hàm số y = f x sang trái m đơn vị.
- Bước 2: Xóa phần nằm bên trái Oy của đồ thị thu được ở Bước 1.
- Bước 3: Lấy đối xứng đồ thị thu được ở Bước 2 qua Oy.
* Nếu m=0 :
- Bước 1: Tịnh tiến đồ thị hàm số y = f x sang phải m đơn vị.
- Bước 2: Xóa phần nằm bên trái Oy của đồ thị thu được ở Bước 1.
- Bước 3: Lấy đối xứng đồ thị thu được ở Bước 2 qua Oy.
Quan sát ta thấy đồ thị hàm số y = f x có 2 điểm cực trị.
Để đồ thị hàm số y = x + m có 5 điểm cực trị thì nhánh bên phải Oy của đồ thị hàm số y = x + m phải có 2 điểm cực trị => Điểm cực trị của đồ thị hàm số y = f x phải được tịnh tiến sang phải O y ⇒ m < − 1 .
Cho hàm số y = 1 - x x 2 - 2 m x + 4 . Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số có ba đường tiệm cận?
A. m > 2 h ặ c m < - 2 m ≠ 5 2
B. m > 2 m ≠ 5 2
C. - 2 < m < 2
D. m<-2 hoặc m>2
Cho hàm số y = 1 - x x 2 - 2 m x + 4 . Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số có ba đường tiệm cận
Cho hàm số y = 1 - x x 2 - 2 m x + 4 . Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số có ba đường tiệm cận
A. m > 2 m < - 2 m ≠ 5 2
B. m > 2 m ≠ 5 2
C. -2<m<2
D. m < - 2 m > 2
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = x + 1 m x − 1 2 + 4 có hai tiệm cận đứng
A. m < 1
B. m < 0 m ≠ − 1
C. m = 0
D. m < 0
Tìm tất cả các giá trị thực của tham số m để hàm số y = x 3 - 3 m x 2 + ( m - 1 ) x + 2 có cực đại, cực tiểu và các điểm cực trị của đồ thị hàm số có hoành độ dương
A. 0 ≤ m ≤ 1
B. m ≥ 1
C. m ≥ 0
D. m > 1
Chọn D
Ta có y ' = 3 x 2 - 6 m x + m - 1
Hàm số có cực đại, cực tiểu khi và chỉ khi PT y ' = 0 có hai nghiệm phân biệt
Điều này tương đương
Hai điểm cực trị có hoành độ dương
Vậy các giá trị cần tìm của m là m >1