chứng minh 3n - 1 chia hết cho 2 - n
Chứng minh A(n) = n^2 + 3n chia hết cho 2
Chứng tỏ : n .( n + 1 ) chia hết cho 2 .
A (n) = n^2 + 3n = n( n + 3 )
(+) n là số chẵn => n = 2k thay vào ta có
2k ( 2k + 3 ) luôn luôn chia hết cho 2
(+) n là số lẻ => n = 2k +1 thay vào ta có :
n ( n+ 3 ) = ( 2k + 1 )( 2k + 4) = 2 ( 2k + 1 )( k + 2) luô luôn chia hết cho 2
VẬy A (n) luôn luôn chia hết cho 2
CÁi sau tương tự
câu a) n^2+ 3n=n^2 +1n+ 2n
=n(n+1)+2n
(mà n (n +1) là tích của 2 số tự nhiên liên tiêp
nên n(n+1) chia hết cho 2 và 2n cũng chia hết cho 2 )
=>n(n+1) chia hết cho 2
câu b)n (n +1) là tích của 2 số tự nhiên liên tiêp
nên n(n+1) chia hết cho 2
Chứng minh:
a: n^4+3n^3-n^2-3n chia hết cho 6
b: (2n-1)^3-2n+1 chia hết cho 24
1) Đặt A = n^5 - n = n(n^4 - 1) = n(n^2 - 1)(n^2 + 1) = n(n - 1)(n + 1)(n^2 + 1)
Nếu n chia hết cho 5 ta dễ thấy đpcm
Nếu n : 5 dư 1 => n = 5k + 1
=> A = n.(5k + 1 - 1)(n + 1)(n^2 + 1) = n.5k.(n + 1)(n^2 + 1) chia hết cho 5
Nếu n : 5 dư 2 => n = 5k + 2
=> A = n(n - 1)(n + 1)[(5k + 2)^2 + 1] = n(n - 1)(n + 1)(25k^2 + 20k + 5)
= 5n(n - 1)(n + 1)(5k^2 + 4k + 1) chia hết cho 5
Nếu n : 5 dư 3 => n = 5k + 3
=>A = n(n - 1)(n + 1)(25k^2 + 30k + 10) = 5n(n - 1)(n + 1)(5k^2 + 6k + 2) chia hết cho 5
Nếu n : 5 dư 4 => n = 5k + 4
=> A = n(n - 1)(5k + 5)(n^2 + 1) = 5n(n - 1)(k + 1)(n^2 + 1) chia hết cho 5
Vậy trong tất cả trường hợp n^5 - n luôn chia hết cho 6
2) Đặt B = n^3 - 13n = n^3 - n -12n = n(n - 1)(n + 1) - 12n
Ta có : Trong 3 số nguyên liên tiếp tồn tại ít nhất 1 số chẵn và tồn tại ít nhất một số chia hết cho 3 nên tích của 3 số đó chia hết cho 2 và chia hết cho 3 mà (2;3) = 1 nên tích 3 số nguyên liên tiếp chia hết cho 6
=> n(n - 1)(n + 1) chia hết cho 6 mà 12n chia hết cho 6
=> n^3 - n chia hết cho 6
3) n^3 + 23n = n^3 - n + 24n = n(n - 1)(n + 1) + 24n
Tương tự câu 2 : n(n - 1)(n + 1) và 24n chia hết cho 6
=> n^3 + 23n chia hết cho 6
4)Đặt A = n(n + 1)(2n + 1) = n(n + 1)[2(n - 1) + 3]
= 2n(n + 1)(n - 1) + 3n(n + 1)
n(n + 1) là tích 2 số nguyên liên tiếp nên chia hết cho 2
2n(n + 1)(n - 1) chia hết cho 2
=> A chia hết cho 2
n(n + 1)(n - 1) là tích 3 số nguyên liên tiếp nên chia hết cho 3
3n(n + 1) chia hết cho 3
=> A chia hết cho 3
Mà (2 ; 3) = 1 (nguyên tố cùng nhau)
=> A chia hết cho 6
5) Đặt A = 3n^4 - 14n^3 + 21n^2 - 10n
Chứng minh bằng quy nạp
Với n =1 => A = 0 chia hết cho 24
Giả sử A chia hết 24 đúng với n = k
Nghĩa là :A(k) = 3k^4 - 14k^3 + 21k^2 - 10k chia hết cho 24
Ta phải chứng minh :
A chia hết cho 24 đúng với n = k + 1
Nghĩa là :
A(k + 1) = 3(k + 1)^4 - 14(k + 1)^3 + 21(k + 1)^2 - 10(k + 1)
Khai triển ta được :
A = (3k^4 - 14k^3 + 21k^2 - 10k) + (12k^3 - 24k^2 + 12k)
Ta phải chứng minh : 12k^3 - 24k^2 + 12k chia hết 24
12k^3 - 24k^2 + 12k = 12k(k^2 - 2k + 1)
= 12k(k - 1)^2 = 12k(k - 1)(k - 1)
12 chia hết 12
k(k - 1) là tích 2 số nguyên liên tiếp nên chia hết cho 2
=> 12k^3 - 24k^2 - 2k + 1 chia hết cho 24
Mà 3k^4 - 14k^3 + 21k^2 - 10k chia hết cho 24 (giả thiết quy nạp)
=> A(k + 1) chia hết 24
Theo nguyên lý quy nạp => A chia hết cho 24 (đpcm)
6) n = 2k + 1 với k thuộc Z
A = n^2 + 4n + 3 = (2k + 1)^2 + 4(2k + 1) + 3
= 4k^2 + 12k + 8
= 4(k^2 + 3k + 2)
= 4(k + 2k + k + 2)
= 4(k + 1)(k + 2)
4 chia hết cho 4
(k +1)(k + 2) là tích 2 số nguyên liên tiếp nên chia hết cho 2
=> n^2 + 4n + 3 chia hết cho 4.2 = 8 với n lẻ
7) n = 2k + 1
Đặt A = n^3 + 3n^2 - n - 3
= (2k + 1)^3 + 3(2k + 1)^2 - (2k + 1) - 3
= 8k^3 + 24k^2 + 16k
= 8k(k^2 + 3k + 2)
= 8k(k^2 + k + 2k + 2)
= 8k(k + 1)(k + 2)
8 chia hết cho 8
k(k + 1)(k + 2) là tích 3 số nguyên liên tiếp nên chia hết cho 2 và 3 => chia hết cho 6
=> A chia hết cho 8.6 = 48 với n lẻ
Chứng minh:
a,A=(n-1).(n+1)-n^2+3n-5 chia hết cho 3
b,A=(2n-1).(n+1)-n(2n-3n)+21 chia hết cho 5
a,A=(n-1).(n+1)-n^2+3n-5
= n^2 - 1 - n^2 + 3n - 5
= 3n - 6
= 3(n - 2) chia hết cho 3
b,A=(2n-1).(n+1)-n(2n-4)+21
= 2n^2 + n - 1 - 2n^2 + 4n + 21
= 5n + 20 = 5(n + 4) chia hết cho5
A = ( n - 1 )( n + 1 ) - n2 + 3n - 5
= n2 - 1 - n2 + 3n - 5
= 3n - 6 = 3( n - 2 ) chia hết cho 3 ( đpcm )
A = ( 2n - 1 )( n + 1 ) - n( 2n - 3n ) + 21
= 2n2 + n - 1 - n( -n ) + 21
= 2n2 + n + 20 + n2
= 3n2 + n + 20 ( cái này chưa chắc được :)) )
Chứng minh
a,(n2+3n-1)(n+2)-n3+2.Chia hết cho 5.
b,(6n+1)(n+5)-(3n.5)(2n-1).Chia hết cho 2.
Địt địt địt địt địt địt địt địt địt địt địt địt địt địt địt địt địt địt địt địt địt địt địt địt địt địt địt địt địt địt địt địt địt địt
chứng minh rằng số A(n) = 2^3n +1 chia hết cho 3^(n+1) nhưng không chia hết cho 3^(n+2chứng minh rằng số A(n) = 2^3^n +1 chia hết cho 3^(n+1) nhưng không chia hết cho 3^(n+2)
Cho n là số nguyên dương. Chứng minh rằng:
\(A=2^{3n-1}+2^{3n+1}+1 \) chia hết cho 7
Do n nguyên dương, đặt \(n=m+1\) với m là số tự nhiên
\(\Rightarrow A=2^{3\left(m+1\right)-1}+2^{3\left(m+1\right)+1}+1=2^{3m+2}+2^{3\left(m+1\right)+1}+1\)
\(=4.8^m+2.8^{m+1}+1\)
Do \(8\equiv1\left(mod7\right)\Rightarrow\left\{{}\begin{matrix}8^m\equiv1\left(mod7\right)\\8^{m+1}\equiv1\left(mod7\right)\end{matrix}\right.\)
\(\Rightarrow4.8^m+2.8^{m+1}+1\equiv4+2+1\left(mod7\right)\)
\(\Rightarrow4.8^m+2.8^{m+1}+1⋮7\)
Bài 4: Chứng minh rằng:
a) \(4^{10}+4^7\) chia hết cho 65
b) \(10^{10}-10^9-10^8\) chia hết cho 89
Bài 5. Tìm số tự nhiên n để:
a) 5n+4 chia hết cho n
b) n+6 chia hết cho n+2
c) 3n+1 chia hết cho n-2
d) 3n+9 chia hết cho 2n-1
Bài 6: chứng minh rằng:
\(\overline{abab}\) chia hết cho 101
\(\overline{abc-\overline{cba}}\) chia hết cho 9 và 11
Bài 5:
b: Ta có: \(n+6⋮n+2\)
\(\Leftrightarrow n+2\in\left\{2;4\right\}\)
hay \(n\in\left\{0;2\right\}\)
c: Ta có: \(3n+1⋮n-2\)
\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)
hay \(n\in\left\{1;3;9\right\}\)
1, Cho n thuộc N chứng minh 3n^2 + n chia hết cho 2
Chứng minh
( n2 + 3n - 1) ( n + 2 ) - n3 + 2 chia hết cho 10
( 2m -3 ) ( 3n - 2 ) - ( 3m - 2 ) ( 2n - 3 ) chia hết cho 5
Chứng minh 3n - 1 chia hết cho 2- n