Gọi M, N lần lượt là GTLN, TNNN của hàm số y = x 3 - 3 x 2 + 1 trên [1;2]. Khi đó tổng M+N bằng
Gọi M, N lần lượt là GTLN, TNNN của hàm số y = x 3 - 3 x 2 + 1 trên [1;2]. Khi đó tổng M+N bằng
A. - 2
B. - 4
C. 0
D. 2
Gọi M và n lần lượt là gtln và gtnn của hàm số y= cos^2* x/3+ sin*x/3+1. Tính tổng M+n
Đề là \(\dfrac{cos^2x}{3}+\dfrac{sinx}{3}+1\) hay \(cos^2\left(\dfrac{x}{3}\right)+sin\left(\dfrac{x}{3}\right)+1\) vậy nhỉ?
Cho hàm số \(y=x^2-\left(m-\sqrt{m^2-16}\right)x+2m+2\sqrt{m^2-16}\) . Gọi GTLN , GTNN của hàm số trên [2:3] lần lượt là \(y_1,y_2\) . Số giá trị của tham số m để \(y_1-y_2=3\) là bao nhiêu
Gọi M và N lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = - 1 + 2 . cos x 2 - 3 . sin x + cos x trên ℝ . Biểu thức M + N + 2 có giá trị bằng:
A. 0
B. 4 2 - 3
C. 2
D . 2 + 3 + 2
Gọi M, m lần lượt là GTLN, GTNN của hàm số f(x) = (x2 – 3)ex trên đoạn [0; 2]. Giá trị biểu thức A = (m2 – 4M)2016 bằng:
A. 1
B. 22016
C. 0
D. e2016
Chọn C.
f'(x) = 2xex + ex(x2 – 3) = 0
Ta có f(0) = -3
f(1) = -2e = m
f(2) = e2 = M
Suy ra (m2 – 4M)2016 = 0
Gọi M, m lần lượt là GTLN, GTNN của hàm số y = x - 1 + 7 - x . Khi đó có bao nhiêu số nguyên nằm giữa m, M ?
A. 1
B. 2
C. Vô số
D. 0
Chọn A.
ĐK: 1 ≤ x ≤ 7
Ta có
Xét y(1) = y(7) = 6 , y(4) = 2 3 suy ra 2,44 < k < 3,464 suy ra k = 3 có 1 số nguyên k.
Gọi M, m lần lượt GTLN, GTNN của hàm số y = x + 1 x trên 1 3 ; 3 . Khi đó 3M+m bằng:
A. 12
B. 35 6
C. 7 2
D. 10
Chọn A.
Trên 1 2 ; 3 ta có: y ' = 1 - 1 x 2 ; y ' = 0 ⇔ x = 1 x = - 1 L
Khi đó y 1 2 = 5 2 , y 1 = 2 , y 3 = 10 3 . Vậy: 3 M + m = 12
Gọi M, m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số y= x - 1 + 3 - x thì M+ 2 m bằng
A. 2 2 + 1
B. 4
C. 2 + 2
D. 3
Gọi M và m lần lượt là GTLN và GTNN của hàm số y = 2 x 3 + 3 x 2 - 12 x + 2 trên đoạn [ - 1;2]. Tỉ số M m bằng
A. - 2
B. - 3
C. - 1 3
D. - 1 2
Đáp án B
Cách giải: y = 2 x 3 + 3 x 2 - 12 x + 2