Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ dưới. Xét hàm số g ( x ) = f ( 2 x 3 + x - 1 ) + m . Tìm m để m a x 0 ; 1 g x = - 10
A. m = -13
B. m = 5
C. m = 3
D. m = -1
Cho hàm số y=f(x) có đạo hàm liên tục trên R và có đồ thị hàm y=f '(x) như hình vẽ. xét hàm số g(x)=f(2-x^2). Mệnh đề nào dưới đây sai?
A. Hàm số đạt cực trị tại .
B. Hàm số nghịch biến trên .
C. Hàm số đồng biến trên .
D. Hàm số đồng biến trên .
Cho hàm số y=f(x) có đạo hàm liên tục trên R và có đồ thị hàm y = f'(x) như hình vẽ. xét hàm số g x = f 2 - x 2 . Mệnh đề nào dưới đây sai?
A. Hàm số f(x) đạt cực trị tại x=2.
B. Hàm số f(x) nghịch biến trên - ∞ ; 2 .
C. Hàm số g(x) đồng biến trên 2 ; + ∞ .
D. Hàm số g(x) đồng biến trên (-1;0).
Cho hàm số y=f(x) có đạo hàm trên R. Đường cong hình vẽ bên là đồ thị hàm số y=f '(x) (Hàm số y=f '(x) liên tục trên R. Xét hàm số g ( x ) = f ( x 2 - 2 ) . Mệnh đề nào dưới đây là sai?
A. Hàm số y=g(x) đồng biến trên khoảng (-2;-1)
B. Hàm số y=g(x) đồng biến trên khoảng 2 ; + ∞
C. Hàm số y=g(x) nghịch biến trên khoảng (-1;0)
D. Hàm số y=g(x) nghịch biến trên khoảng (0;2)
Cho hàm số y = f(x) có đạo hàm trên R. Đường cong trong hình vẽ bên là đồ thị của hàm số y = f’(x), (y = f’(x) liên tục trên R). Xét hàm số g(x) = f(x2 - 2). Mệnh đề nào dưới đây sai?
A. Hàm số g(x) nghịch biến trên (-∞;-3)
B. Hàm số g(x) có 3 điểm cực trị
C. Hàm số g(x) nghịch biến trên (-1;0)
D. Điểm cực đại của hàm số là 0
cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ. Xét hàm số g(x)=f(x^3+2x-1)+4m. Tìm m để ming(x)=5
\(g’\left( x \right) = \left( {3{x^2} + 1} \right)f’\left( {{x^3} + x – 1} \right)\)
Xét \(g’\left( x \right) = 0 \Leftrightarrow f’\left( {{x^3} + x – 1} \right) = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}{x^3} + x – 1 = – 1\\{x^3} + x – 1 = 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{x^3} + x = 0\\{x^3} + x – 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\end{array} \right.\).
\(\begin{array}{l}g\left( 0 \right) = f\left( { – 1} \right) + m = 3 + m\\g\left( 1 \right) = f\left( 1 \right) + m = – 1 + m\end{array}\)
\(\begin{array}{l} \Rightarrow \mathop {\max }\limits_{\left[ {0;1} \right]} g\left( x \right) = g\left( 0 \right)\\ \Rightarrow 3 + m = – 10\\ \Leftrightarrow m = – 13\end{array}\)
Cho hàm số y = f(x) có đạo hàm liên tục trên R. Đường cong trong hình vẽ bên là đồ thị của hàm số y = f’(x). Xét hàm số g(x) = f(x2 – 3). Mệnh đề nào dưới đây sai ?
A. Hàm số g(x) đồng biến trên (–1;0)
B. Hàm số g(x) nghịch biến trên (–∞;–1)
C. Hàm số g(x) nghịch biến trên (1;2)
D. Hàm số g(x) đồng biến trên (2;+ ∞)
Đáp án C.
Ta có ∀ x ∈ R
Khi đó
Suy ra hàm số đồng biến trên khoảng (–1;0) và (1;+ ∞)
Cho hàm số y=f(x) xác định và liên tục trên R, có đồ thị hàm số y=f’(x) như hình vẽ bên dưới. Hàm số g(x)=f(x) – 1/2 x2+ x-8 có bao nhiêu điểm cực tiểu?
A. 3
B. 2
C. 1.
D. 4
Cho hàm số y= f( x) liên tục và xác định trên R. Biết f( x) có đạo hàm f’(x) và hàm số y= f’(x) có đồ thị như hình vẽ. Xét trên , khẳng định nào sau đây đúng?
A. Hàm số y= f( x) đồng biến trên khoảng .
B. Hàm số y= f( x) nghịch biến trên khoảng .
C. Hàm số y= f(x) nghịch biến trên khoảng - π ; - π 2 và π 2 ; π .
D. Hàm số y= f( x) đồng biến trên khoảng .
Chọn D
Trong khoảng đồ thị hàm số y= f’(x) nằm phía trên trục hoành nên hàm số y= f( x) đồng biến trên khoảng ( 0; π)
Cho hàm số y=f(x) có đạo hàm liên tục trên R và có đồ thị hàm số y=f '(x) như hình vẽ bên dưới. Xét hàm số g(x)=f(x^2-3) và các mệnh đề sau:
I. Hàm số có 3 điểm cực trị.
II. Hàm số g(x)đạt cực tiểu tại x=0
III. Hàm số g(x) đạt cực đại tại x=2
IV. Hàm số g(x) đồng biến trên khoảng (-2;0)
V. Hàm số g(x) nghịch biến trên khoảng (-1;1)
Có bao nhiêu mệnh đề đúng trong các mệnh đề trên?
A.1
B.4
C.3
D.2
Chọn D
Xét hàm số .
Có
.
Ta lại có thì . Do đó thì .
thì . Do đó thì .
Từ đó ta có bảng biến thiên của như sau
Dựa vào bảng biến thiên, ta có
I. Hàm số có 3 điểm cực trị . LÀ MỆNH ĐỀ ĐÚNG.
II. Hàm số đạt cực tiểu tại LÀ MỆNH ĐỀ SAI.
III. Hàm số đạt cực đại tại LÀ MỆNH ĐỀ SAI.
IV. Hàm số đồng biến trên khoảng LÀ MỆNH ĐỀ ĐÚNG.
V. Hàm số nghịch biến trên khoảng LÀ MỆNH ĐỀ SAI.
Vậy có hai mệnh đề đúng.
ở chỗ x<1=> x= -2 thì sao bạn ơi =>(x^2 -3) =1 >0 thì sao f ' (...)>0 được ????