Cho hàm số y=f(x) có đạo hàm liên tục trên R và có đồ thị hàm số y=f' (x) như hình vẽ bên. Xét hàm số g(x)=f(x^2-3) và các mệnh đề sau:
1. Hàm số g(x) có 3 điểm cực trị.
2. Hàm số g(x)đạt cực tiểu tại x = 0.
3. Hàm số g(x)đạt cực đại tại x = 2.
4. Hàm số g(x)đồng biến trên khoảng (-2;0).
5. Hàm số g(x)nghịch biến trên khoảng (-1;1).
Có bao nhiêu mệnh đề đúng trong các mệnh đề trên?
A. 1.
B. 4.
C. 3.
D. 2.
Cho hàm số y = f(x) liên tục trên ℝ có đồ thị y = f '(x) như hình vẽ bên. Hàm số y = f x 2 + 2 x + 9 − x 2 + 2 x + 4 có bao nhiêu điểm cực tiểu
A. 0.
B. 1.
C. 2.
D. 3.
Cho hàm số y = f(x) liên tục trên R, hàm số y = f'(x) có đồ thị như hình vẽ bên. Hỏi hàm số y = 2 f x − x 2 + 2 x + 2018 có bao nhiêu điểm cực trị?
A. 1
B. 2
C. 3
D. 4
Cho hàm số y = f(x) liên tục trên R có đồ thị y = f'(x) như hình vẽ bên. Biết f 1 = 0 . Xác định số điểm cực trị của đồ thị hàm số y = |f(x)|.
A. 5
B. 6
C. 4
D. 3
Cho hàm số y=f(x) xác định, liên tục trên khoảng ( - ∞ ; + ∞ ) và có đồ thị là đường cong trong hình vẽ bên. Hàm số y=f(x) đạt cực tiểu tại điểm nào dưới đây
A. x=-1
B. x=0
C. x=1
D. x=+1, x=-1
Cho hàm số y=f(x) liên tục trên R và có đồ thị là đường cong như hình vẽ bên. Tìm điểm cực tiểu của đồ thị hàm số y=f(x).
A. y=-2
B. x=0
C. M(0;-2)
D. N(2;2)
Cho hàm số f(x) có đạo hàmf'(x) xác định và liên tục trên đoạn [0;6]. Đồ thị hàm số y=f'(x) như hình vẽ bên. Biết f(0)=f(3)=f(6)=-1,f(1)=f(5)=1. Số điểm cực trị của hàm số y = [ f ( x ) ] 2 trên đoạn [0;6] là
A. 5.
B. 7.
C. 9.
D. 8.
Cho hàm số y=f(x) có đạo hàm trên R. Đồ thị hàm số y=f '(x) như hình vẽ bên dưới. Hỏi đồ thị hàm số g(x)=f(x)-x có bao nhiêu điểm cực trị?
A. 1
B. 2
C. 3
D. 4
Cho hàm số y=f(x) xác định và liên tục trên R. Đồ thị của hàm số f(x) như hình bên. Số điểm cực trị của đồ thị hàm số y=f(f(x)) bằng?
A. 8
B. 9
C. 10.
D. 11.