Cho hàm số f(x) = x2e-x. Bất phương trình f ' ( x ) ≥ 0 có tập nghiệm là:
Cho hàm số f x = x 2 e − x . Bất phương trình f ' x ≥ 0 có tập nghiệm là:
A. − 2 ; 2
B. − ∞ ; − 2 ∪ 0 ; + ∞
C. − ∞ ; 0 ∪ 2 ; + ∞
D. 0 ; 2
Đáp án D
f ' x = 2 x − x 2 e x ≥ 0 ⇔ 2 x − x 2 ≥ 0 ⇔ 0 ≤ x ≤ 2
Cho hàm số f ( x ) = x 3 - 3 x + 2018 . Tập nghiệm của bất phương trình f'(x) > 0 là:
A. (-1;1)
B. [-1;1]
C. - ∞ ; - 1 ∪ 1 ; + ∞
D. ( - ∞ ; - 1 ] ∪ [ 1 ; + ∞ )
Đáp án C.
- Phương pháp:
+) Tính f'(x).
+) Sử dụng quy tắc trong trái ngoài cùng giải bất phương trình bậc hai.
- Cách giải:
+ Ta có:
→ Vậy tập nghiệm của bất phương trình là
Cho hàm số f ( x ) = l n ( x 2 - 2 x + 3 ) . Tập nghiệm của bất phương trình f'(x)>0 là
A. ( 2 ; + ∞ ) .
B. ( - 1 ; + ∞ ) .
C. ( - 2 ; + ∞ ) .
D. ( 1 ; + ∞ ) .
Cho hàm số f ( x ) = 1 - 3 x + x 2 x - 1 . Tập nghiệm của bất phương trình f'(x) > 0 là:
A. R\{1}
B. ∅
C. 1 ; + ∞
D. R
Cho hàm số f ( x ) = 1 3 x 3 - x 2 + 2 x - 2009 . Tập nghiệm của bất phương trình f'(x) ≤ 0 là:
A. ∅
B. [-2;2]
C. 0 ; + ∞
D. R
Chọn A
- Ta có:
- Suy ra bất phương trình vô nghiệm.
Cho hàm số f(x)=-1/3x3 + 4x2-7x+2. Tập nghiệm của bất phương trình: f ' ( x ) ≥ 0 là
Cho hàm số y = f ( x ) = ln ( 1 + x 2 + x ) .
Tập nghiệm của bất phương trình
f ( a - 1 ) + f ( ln a ) ≤ 0 là:
Cho hàm số . Tập nghiệm của bất phương trình f’(x) > 0 là
A. R \ {1}.
B. ∅.
C. (1; +∞).
D. R.
cho hàm số y=f(x)=x2. Tìm m để bất phương trình f(x-3)+5-m>0 cố tập nghiệm là R
\(f\left(x-3\right)+5-m>0\)
\(\Leftrightarrow\left(x-3\right)^2+5-m>0\)
\(\Leftrightarrow x^2-6x+14-m>0\)
BPT có tập nghiệm là R khi:
\(\Delta'=9-\left(14-m\right)< 0\)
\(\Leftrightarrow m< 5\)