Phân tích đa thức thành nhân tử
\(x^{10}+x^2+1\)
\(x^{11}+x^4+1\)
\(x^{10}+x^5+1\)
\(x^7+x^2+1\)
Bài 2:Phân tích đa thức sau thành nhân tử:
6,(x+2).(x+3).(x+4)
7,x^2-2xy+y^2+3x-3y
8,x^4+4
9,4x.(x+1)^2-5x^2.(x+1)-4.(x+1)
10,(1+2x).(1-2x)-(x+2).(x-2)
11,a^2-2a-46^2-46
7,x2-2xy+y2+3x-3y=(x-y)2+3(x-y)=(x-y)(x-y+3)
8,x4+4=(x4+4x2+4)-4x2=(x2+2)2-(2x)2=(x2-2x+2)(x2+2x+2)
9,4x(x+1)2-5x2(x+1)-4.(x+1)=(x+1)\(\left[4x\left(x+1\right)-5x^2-4\right]\)=(x+1)(4x2+4x-5x2-4)=(x+1)(-x2+4x-4)=-(x+1)(x-2)2
7: \(x^2-2xy+y^2+3x-3y\)
\(=\left(x-y\right)^2+3\cdot\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y+3\right)\)
8: \(x^4+4\)
\(=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-4x^2\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
9: \(4x\left(x+1\right)^2-5x^2\left(x+1\right)-4\left(x+1\right)\)
\(=\left(x+1\right)\left(4x^2+4x-5x^2-4\right)\)
\(=\left(x+1\right)\left(-x^2+4x-4\right)\)
\(=-\left(x+1\right)\left(x-2\right)^2\)
10: \(\left(1+2x\right)\left(1-2x\right)-\left(x+2\right)\left(x-2\right)\)
\(=1-4x^2-x^2+4\)
\(=-5x^2+5\)
\(=-5\left(x-1\right)\left(x+1\right)\)
phân tích đa thức thành nhân tử bằng phương pháp thêm bớt hạng tử để xuất hiện hằng đăng thức
x^4 + x^2 +1
phân tích đa thức thành nhân tử bằng phương pháp thêm hạng tử để xuất hiện thừa số chung
x^5 - x^4 - 1
x - x^10 + x^5 + 1
x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)
k mk nha
phân tích đa thức thành nhân tử bằng phương pháp thêm bớt hạng tử để xuất hiện hằng đăng thức
x^4 + x^2 +1
phân tích đa thức thành nhân tử bằng phương pháp thêm hạng tử để xuất hiện thừa số chung
x^5 - x^4 - 1
x - x^10 + x^5 + 1
x5-x4-1=x5-x3-x2-x4+x2+x+x3-x-1
=x2.(x3-x-1)-x.(x3-x-1)+(x3-x-1)
=(x3-x-1)(x2-x+1)
x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)
k mk nha
phân tích đa thức thành nhân tử
a, x^7 + x^2 + 1
b, x^10 + x^5 + 1
c, x^7 + x^5 + 1
d, x^5 + x + 1
x^10 + x^5 + 1
= x^10 + x^9 - x^9 + x^8 - x^8 + x^7 - x^7 + x^6 - x^6 + x^5 + x^5 - x^5 + x^4 - x^4 + x^3 - x^3 + x^2 - x^2 + x - x + 1
= (x^10 + x^9 + x^8) - (x^9 + x^8 + x^7) + (x^7 + x^6 + x^5) - (x^6 + x^5 + x^4) + (x^5 + x^4 + x^3) - (x^3 + x^2 + x) + (x^2 + x + 1)
= x^8 (x^2 + x + 1) - x^7 (x^2 + x + 1) + x^5 (x^2 + x + 1) - x^4 (x^2 + x + 1) + x^3 (x^2 + x + 1) - x (x^2 + x + 1) + (x^2 + x + 1)
= (x^2 + x + 1) (x^8 - x^7 + x^5 - x^4 + x^3 - x + 1)
-----------------------
Phương pháp:
Khi gặp bài toán phân tích thành nhân tử dạng x^(3m + 1) + x^(3n + 2) + 1 em thêm bớt các hạng tử từ bậc cao nhất trừ đi 1 đến x (bậc nhất) sao cho tổng số các hạng tử trong đa thức mới là một bội của 3. Sau đó nhóm ba hạng tử một sao cho trong mỗi nhóm có x² + x + 1
Dạng này khi phân tích luôn có kết quả là: (x² + x + 1).Q(x)
x^7 + x^2 + 1 = x^7 + x^6 - x^6 + x^5 - x^5 + x^4 - x^4 +x^3 - x^3 +2x^2 - x^2 +x - x +1
=(x^7 + x^6 + x^5) - (x^6 +x^5 +x^4) + (x^4 + x^3 +x^2) - (x^3 +x^2 + x) + (x^2 + x +1)
=x^5(x^2 + x + 1) - x^4(x^2 + x + 1) +x^2(x^2 + x + 1) - x(x^2 + x + 1) + (x^2 + x + 1)
=(x^2 + x + 1)(x^5 - x^4 +x^2 -x +1)
phân tích đa thức thành nhân tử
1/ (x -1)(x - 2)(x + 4)(x + 5) - 112
2 / (x -2)(x + 2)( x^2 - 10 ) - 72
Câu 1:
\(\left(x-1\right)\left(x-2\right)\left(x+4\right)\left(x+5\right)-112\)
\(=\left(x-1\right)\left(x+4\right)\left(x-2\right)\left(x+5\right)-112\)
\(=\left(x^2+3x-4\right)\left(x^2+3x-10\right)-112\)
\(=\left(x^2+3x-7\right)^2-3^2-112\)
\(=\left(x^2+3x-7\right)^2-11^2\)
\(=\left(x^2+3x+4\right)\left(x^2+3x-18\right)\)
\(=\left(x^2+3x+4\right)\left(x+6\right)\left(x-3\right)\)
Câu 2:
\(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)-72\)
\(=\left(x^2-4\right)\left(x^2-10\right)-2\)
\(=\left(x^2-7\right)^2-3^2-72\)
\(=\left(x^2-7\right)^2-81\)
\(=\left(x^2-16\right)\left(x^2+2\right)\)
\(=\left(x-4\right)\left(x+4\right)\left(x^2+2\right)\)
(x−1)(x−2)(x+4)(x+5)−112
=(x−1)(x+4)(x−2)(x+5)−112
=(x^2+3x−4)(x^2+3x−10)−112
=(x^2+3x−7)^2−32−112
=(x^2+3x−7)^2−112
=(x^2+3x+4)(x^2+3x−18)
=(x^2+3x+4)(x+6)(x−3)
Câu 2:
(x−2)(x+2)(x^2−10)−72
=(x2−4)(x^2−10)−2
=(x^2−7)^2−32−72
500,600,700,800,900,1000
cách làm :
500 thì bỏ 2 số 0 thì sẻ =5 tương tự 600=6 cứ nối tiếp 7,8,9
rồi thì trả lại số 0 cho các số
nếu số đầu là 2 số 0 thì các số khác cũng sẽ 2 số 0
vậy các số cần tìm là : 600, 700,800,900
chúc em học tốt dù hơi rối xíu
phân tích đa thức thành nhân tử
1) (4x+1)(12x-1)(3x+2)(x+1)-4
2) 4(x+5)(x+6)(x+10)(x+12)-3x2
Đây là một dạng phân tích thừa số nguyên tố khá quen, cô sẽ hướng dẫn e nhé :) Ta cần ghép các hạng tử để xuất hiện các thành phần chứa biến giống nhau.
\(A=\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4=\left(4x+1\right)\left(3x+2\right)\left(12x-1\right)\left(x+1\right)-4\)
\(=\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)-4\)
Đặt \(12x^2+11x+2=t\Rightarrow A=t\left(t-3\right)-4=t^2-3t-4=\left(t-4\right)\left(t+1\right)\)
Quay lại biến x ta có: \(A=\left(12x^2+11x-2\right)\left(12x^2+11x+3\right)\)
Câu sau tương tự nhé :)
Phân tích đa thức thành nhân tử:
a) (x+1)(x+3)(x+4)(x+6)-7
b)(x+2)(x+3)(x+5)(x+6)-10
c) x(2x+1)(2x+3)(4x+8)-18
Phân tích đa thức thành nhân tử:
a) (x+1)(x+3)(x+4)(x+6)-7
b)(x+2)(x+3)(x+5)(x+6)-10
c) x(2x+1)(2x+3)(4x+8)-18
\(\left(x+1\right)\left(x+3\right)\left(x+4\right)\left(x+6\right)-7\)
\(=\left\{\left(x+1\right)\left(x+6\right)\right\}.\left\{\left(x+3\right)\left(x+4\right)\right\}-7\)
\(=\left(x^2+7x+6\right)\left(x^2+7x+12\right)-7\) \(\left(1\right)\)
đặt \(x^2+7x+9=a\)
<=> \(\left(1\right)=\left(a-3\right)\left(a+3\right)-7\)
\(=a^2-16\)
\(=\left(a-4\right)\left(a+4\right)\)
hay\(\left(1\right)=\) \(\left(x^2+7x+9-4\right)\left(x^2+7x+9+4\right)\)
\(=\left(x^2+7x+5\right)\left(x^2+7x+13\right)\)
những câu còn lại cũng nhóm đầu với cuối , hai cái giữa với nhau , xong làm tương tự câu trên
học tốt
a) (x + 1)(x + 3)(x + 4)(x + 6) - 7
= (x + 1)(x + 6) (x + 3)(x + 4) - 7
= (x2 + 7x + 6)(x + 7x + 12) - 7
Đặt t = x2 + 7x + 6
Ta có : t(t + 6) - 7
= t2 + 6t - 7
= t2 + 6t + 9 - 16
= (t + 3) - 16
= (t + 3 - 4)(t + 3 + 4)
= (t - 1)(t + 7)
Nên :
Pt = (x2 + 7x + 6 - 1)(x2 + 7x + 6 + 7)
= (x2 + 7x + 5)(x2 + 7x + 13)
Phân tích đa thức thành nhân tử:
a) (x+1)(x+3)(x+4)(x+6)-7
b)(x+2)(x+3)(x+5)(x+6)-10
c) x(2x+1)(2x+3)(4x+8)-18
Làm :
a) (x + 1)(x + 3)(x + 4)(x + 6) - 7
= (x + 1)(x + 6) (x + 3)(x + 4) - 7
= (x2 + 7x + 6)(x + 7x + 12) - 7
Đặt t = x2 + 7x + 6
Ta có : t(t + 6) - 7
= t2 + 6t - 7
= t2 + 6t + 9 - 16
= (t + 3) - 16
= (t + 3 - 4)(t + 3 + 4)
= (t - 1)(t + 7)
Nên :
Pt = (x2 + 7x + 6 - 1)(x2 + 7x + 6 + 7)
= (x2 + 7x + 5)(x2 + 7x + 13)
Phân tích đa thức thành nhân tử
a/ x^10+x^5+1
b(x^2+x+1)(x^2+x+2)-12