Giả sử hàm f có đạo hàm cấp n trên R, n ∈ N * và f ( 1 - x ) + x 2 f ' ' ( x ) = 2 x với mọi x ∈ ℝ . Tính tích phân I = ∫ 0 1 x f ' ( x ) d x
A. I=1
B. I=-1
C. I= 1 3
D. I= - 1 3
Giả sử hàm f có đạo hàm cấp n trên R, n ∈ ℕ * và f 1 - x + x 2 f ' ' x = 2 x với mọi x ∈ ℝ . Tính tích phân ∫ 0 1 x f ' x d x
A. I = 1
B. I = - 1
C. I = 1 3
D. I = - 1 3
Giả sử hàm số f có đạo hàm cấp n trên R thỏa mãn f 1 - x + x 2 f ' ' x = 2 x với mọi x ∈ R . Tính tích phân I = ∫ 0 1 xf ' x dx .
A. I = 1
B. I = 2
C. I = 1/3
D. I = 2/3
Giả sử hàm f có đạo hàm cấp 2 trên R thỏa mãn f 1 = f ' 1 = 1 và f 1 - x + x 2 f ' ' x = 2 x , ∀ x ∈ ℝ . Tính tích phân ∫ 0 1 x f ' x d x
A. I = 1
B. I = 2
C. I = 1 3
D. I = 2 3
Xét các khẳng định sau
i) Nếu hàm số y=f(x) có đạo hàm cấp hai trên R và đạt cực tiểu tại x = x 0 thì f ' x 0 = 0 f ' ' x 0 > 0
ii) Nếu hàm số y=f(x) có đạo hàm cấp hai trên R và đạt cực đại tại x = x 0 thì f ' x 0 = 0 f ' ' x 0 < 0
iii) Nếu hàm số y=f(x) có đạo hàm cấp hai trên R và f ' ' x 0 = 0 thì hàm số không đạt cực trị tại x = x 0
Số khẳng định đúng trong các khẳng định trên là
A. 0
B. 1
C. 2
D. 3
Cho hàm số f (x) có đạo hàm cấp 3 xác định và liên tục trên R thoả mãn f(x)f‴(x) = x ( x 2 - 1 ) ( x - 4 ) , ∀ x ∈ R . Hàm số g ( x ) = ( f ' ( x ) ) 2 - 2 f ( x ) f '' ( x ) đồng biến trên khoảng nào ?
A. (0;1).
B. (-1;0).
C. ( 4 ; + ∞ ) .
D. ( - ∞ ; - 1 ) .
Cho hàm số y=f(x) liên tục trên R có đạo hàm cấp 3 với f’’’(x)=0 và thỏa mãn f ( x ) ' 2018 1 - f ' ' ( x ) = 2 x ( x + 1 ) 2 ( x - 2018 ) 2019 : f ' ' ( x ) , ∀ x ∈ R Hàm số g ( x ) = f ' ( x ) 2019 1 - f ' ' ( x ) có bao nhiêu điểm cực trị?
A. 1
B.2
C.3
D. 4
Cho hàm số y = f(x) liên tục và có đạo hàm cấp hai trên R. Đồ thị của các hàm số y = f(x), y = f'(x) và y = f''(x) lần lượt là các đường cong nào trong hình vẽ bên.
A. C 1 , C 3 , C 2
B. C 3 , C 2 , C 1
C. C 3 , C 1 , C 2
D. C 1 , C 2 , C 3
Đáp án C
Dựa vào hình vẽ, ta thấy rằng:
Đồ thị C 3 có dạng đồ thị hàm số trùng phương.
Đồ thị C 2 có dạng đồ thị hàm số bậc hai (parabol)
Đồ thị C 1 có dạng đồ thị hàm số bậc ba
Vậy đồ thị của các hàm số
Cho hàm số y=f(x) liên tục và có đạo hàm cấp hai trên R. Đồ thị của các hàm số y=f(x),y=f '(x),y=f ''(x) lần lượt là đường cong nào trong hình bên?
.
A. .
B. .
C. .
D. .
Chọn A
Gọi hàm số của các đồ thị tương ứng là .
Ta thấy đồ thị có các điểm cực trị có hoành độ là nghiệm của phương trình nên hàm số là đạo hàm của hàm số .
Đồ thị có các điểm cực trị có hoành độ là nghiệm của phương trình nên hàm số là đạo hàm của hàm số .
Vậy, đồ thị các hàm số , và theo thứ tự, lần lượt tương ứng với đường cong .
Cho hàm số y=f(x) liên tục và có đạo hàm cấp hai trên R. Đồ thị của các hàm số y=f(x), y=f'(x), y=f''(x) lần lượt là các đường cong nào trong hình vẽ bên.
A. C 3 , C 1 , C 2
B. C 1 , C 2 , C 3
C. C 3 , C 2 , C 1
D. C 1 , C 3 , C 2