Họ nguyên hàm của hàm số f x = 1 x + sin x là
A. ln x - cos x + C
B. - 1 x 2 - cos x + C
C. ln x + cos x + C
D. ln x - cos x + C
Hàm số F(x) = ln|sin x – cos x| là một nguyên hàm của hàm số
A. f ( x ) = sin x + cos x sin x - cos x
B. f ( x ) = sin x - cos x sin x + cos x
C. f ( x ) = 1 sin x + cos x
D. f ( x ) = 1 sin x - cos x
Chọn A.
F ' ( x ) = sin x - cos x ' sin x - cos x = cos x + sin x sin x - cos x
Họ nguyên hàm của hàm số f(x) = 4x(1+ln x) là
A. 2 x 2 ln x + 3 x 2
B. 2 x 2 ln x + x 2
C. 2 x 2 ln x + 3 x 2 + C
D. 2 x 2 ln x + x 2 + C
Đáp án D
Phương pháp:
Cách 1: Sử dụng công thức tính nguyên hàm của 1 tổng.
Cách 2: Đạo hàm từng đáp án của đề bài, kết quả nào ra đúng f(x) thì đó là đáp án đúng
Cách giải:
⇒ 2 x 2 ln x + x 2 là một nguyên hàm của hàm số f x = 4 x 1 + ln x
⇒ Họ nguyên hàm của hàm số f x = 4 x 1 + ln x là 2 x 2 ln x + x 2 + C
Họ các nguyên hàm của hàm số f(x) = (2x + 1) ln x là
A. .
B. .
C. .
D. .
Họ nguyên hàm của hàm số f(x) = 2x ( 2 + ln x) là
A. .
B. .
C. .
D. .
Họ nguyên hàm của hàm số \(f\left(x\right)=sin^2x.cos^2x\) là
\(\int sin^2x.cos^2xdx=\dfrac{1}{4}\int sin^22xdx=\dfrac{1}{8}\int\left(1-cos4x\right)dx\)
\(=\dfrac{1}{8}x-\dfrac{1}{32}sin4x+C\)
Tìm họ nguyên hàm của hàm số :
\(f\left(x\right)=\frac{5\sin x}{2\sin x-\cos x+1}\)
Biến đổi :
\(5\sin x=a\left(2\sin x-\cos x+1\right)+b\left(2\cos x+\sin x\right)+c\)
= \(\left(2a+b\right)\sin x+\left(2b-a\right)\cos x+a+c\)
Đồng nhất hệ số hai tử số :
\(\begin{cases}2a+b=5\\2b-a=0\\a+c=0\end{cases}\)
\(\Rightarrow\) \(\begin{cases}a=2\\b=1\\c=-2\end{cases}\)
Khi đó :
\(f\left(x\right)=\frac{2\left(2\sin x-\cos x+1\right)+\left(2\cos x+\sin x\right)-2}{2\sin x-\cos x+1}\)
= \(2+\frac{2\cos x+\sin x}{2\sin x-\cos x+1}-\frac{2}{2\sin x-\cos x+1}\)
Do vậy :
\(I=2\int dx+\int\frac{\left(2\cos x+\sin x\right)dx}{2\sin x-\cos x+1}-2\int\frac{dx}{2\sin x-\cos x+1}\)
=\(2x+\ln\left|2\sin x-\cos x+1\right|-2J+C\)
Với
\(J=\int\frac{dx}{2\sin x-\cos x+1}\)
Tìm họ nguyên hàm của hàm số :
\(f\left(x\right)=\frac{4\sin^2x+1}{\sqrt{3}\sin x+\cos x}\)
Biến đổi :
\(4\sin^2x+1=5\sin^2x+\cos^2x=\left(a\sin x+b\cos x\right)\left(\sqrt{3}\sin x+\cos x\right)+c\left(\sin^2x+\cos^2x\right)\)
\(=\left(a\sqrt{3}+c\right)\sin^2x+\left(a+b\sqrt{3}\right)\sin x.\cos x+\left(b+c\right)\cos^2x\)
Đồng nhấtheej số hai tử số
\(\begin{cases}a\sqrt{3}+c=5\\a+b\sqrt{3}=0\\b+c=1\end{cases}\)
\(\Leftrightarrow\) \(\begin{cases}a=\sqrt{3}\\b=-1\\c=2\end{cases}\)
Họ nguyên hàm của hàm số f x = sin x + 1 là
A. cos x + x + C
B. sin 2 x 2 + x + C
C. - cos x + x + C
D. cos x + C
Tìm họ nguyên hàm của hàm số lượng giác :
\(f\left(x\right)=\frac{1}{2\sin x+1}\)
Biến đổi f(x) về dạng :
\(f\left(x\right)=\frac{1}{2\left(\sin x+\frac{1}{2}\right)}=\frac{1}{2}\frac{1}{\sin x+\sin\frac{\pi}{6}}=\frac{1}{4}\frac{1}{\sin\frac{6x+\pi}{12}.\cos\frac{6x-\pi}{12}}\left(1\right)\)
Sử dụng đồng nhất thức :
\(1=\frac{\cos\frac{\pi}{6}}{\cos\frac{\pi}{6}}=\frac{\cos\left[\frac{6x+\pi}{12}-\frac{6x-\pi}{12}\right]}{\frac{\sqrt{3}}{2}}+\frac{2}{\sqrt{3}}\frac{\cos\left(\frac{6x+\pi}{12}\right).\cos\left(\frac{6x-\pi}{12}\right)+\sin\left(\frac{6x+\pi}{12}\right).\sin\left(\frac{6x-\pi}{12}\right)}{\sin\left(\frac{6x+\pi}{12}\right).\cos\left(\frac{6x-\pi}{12}\right)}\)
Ta được :
\(f\left(x\right)=\frac{2}{\sqrt{3}}\left[\int\frac{\cos\left(\frac{6x+\pi}{12}\right)}{\sin\left(\frac{6x+\pi}{12}\right)}dx-\int\frac{\sin\left(\frac{6x-\pi}{12}\right)}{\cos\left(\frac{6x-\pi}{12}\right)}\right]=\frac{2}{\sqrt{3}}\left(\ln\left|\sin\right|\left(\frac{6x+\pi}{12}\right)-\ln\left|\cos\right|\left(\frac{6x-\pi}{12}\right)\right)\)
\(=\frac{2}{\sqrt{3}}\ln\left|\frac{\sin\left(\frac{6x+\pi}{12}\right)}{\cos\left(\frac{6x-\pi}{12}\right)}\right|+C\)
Cho F(x) là một nguyên hàm của hàm số f(x)=x ln x Tính F ' ' x
A. F ' ' x = 1 − ln x
B. F ' ' x = 1 x
C. F ' ' x = 1 + ln x
D. F ' ' x = x + ln x
Đáp án C
Ta có F ' ' x = f ' x = 1 + ln x