Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 12 2019 lúc 8:13

Chọn A.

F ' ( x ) = sin x - cos x ' sin x - cos x = cos x + sin x sin x - cos x

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 9 2018 lúc 17:34

Đáp án D

Phương pháp:

Cách 1: Sử dụng công thức tính nguyên hàm của 1 tổng.

Cách 2: Đạo hàm từng đáp án của đề bài, kết quả nào ra đúng f(x) thì đó là đáp án đúng

Cách giải:

⇒ 2 x 2 ln   x + x 2  là một nguyên hàm của hàm số  f x = 4 x 1 + ln   x

Họ nguyên hàm của hàm số  f x = 4 x 1 + ln   x là  2 x 2 ln   x + x 2 + C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 9 2017 lúc 6:55

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 11 2019 lúc 4:36

Crackinh
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 3 2022 lúc 17:16

\(\int sin^2x.cos^2xdx=\dfrac{1}{4}\int sin^22xdx=\dfrac{1}{8}\int\left(1-cos4x\right)dx\)

\(=\dfrac{1}{8}x-\dfrac{1}{32}sin4x+C\)

Nguyễn Minh Hằng
Xem chi tiết
Nguyễn Trọng Nghĩa
20 tháng 1 2016 lúc 11:03

Biến đổi : 

\(5\sin x=a\left(2\sin x-\cos x+1\right)+b\left(2\cos x+\sin x\right)+c\)

         = \(\left(2a+b\right)\sin x+\left(2b-a\right)\cos x+a+c\)

Đồng nhất hệ số hai tử số : 

\(\begin{cases}2a+b=5\\2b-a=0\\a+c=0\end{cases}\)

\(\Rightarrow\) \(\begin{cases}a=2\\b=1\\c=-2\end{cases}\)

Khi đó :

\(f\left(x\right)=\frac{2\left(2\sin x-\cos x+1\right)+\left(2\cos x+\sin x\right)-2}{2\sin x-\cos x+1}\)

\(2+\frac{2\cos x+\sin x}{2\sin x-\cos x+1}-\frac{2}{2\sin x-\cos x+1}\)

Do vậy : 

\(I=2\int dx+\int\frac{\left(2\cos x+\sin x\right)dx}{2\sin x-\cos x+1}-2\int\frac{dx}{2\sin x-\cos x+1}\)

=\(2x+\ln\left|2\sin x-\cos x+1\right|-2J+C\)

Với 

\(J=\int\frac{dx}{2\sin x-\cos x+1}\)

Phạm Thái Dương
Xem chi tiết
Nguyễn Hòa Bình
20 tháng 1 2016 lúc 11:44

Biến đổi :

\(4\sin^2x+1=5\sin^2x+\cos^2x=\left(a\sin x+b\cos x\right)\left(\sqrt{3}\sin x+\cos x\right)+c\left(\sin^2x+\cos^2x\right)\)

\(=\left(a\sqrt{3}+c\right)\sin^2x+\left(a+b\sqrt{3}\right)\sin x.\cos x+\left(b+c\right)\cos^2x\)

Đồng nhấtheej số hai tử số 

\(\begin{cases}a\sqrt{3}+c=5\\a+b\sqrt{3}=0\\b+c=1\end{cases}\)

\(\Leftrightarrow\) \(\begin{cases}a=\sqrt{3}\\b=-1\\c=2\end{cases}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 10 2017 lúc 11:49

Đáp án đúng : C

Nguyễn Minh Hằng
Xem chi tiết
Nguyễn Trọng Nghĩa
23 tháng 1 2016 lúc 9:04

Biến đổi f(x) về dạng :

\(f\left(x\right)=\frac{1}{2\left(\sin x+\frac{1}{2}\right)}=\frac{1}{2}\frac{1}{\sin x+\sin\frac{\pi}{6}}=\frac{1}{4}\frac{1}{\sin\frac{6x+\pi}{12}.\cos\frac{6x-\pi}{12}}\left(1\right)\)

Sử dụng đồng nhất thức :

\(1=\frac{\cos\frac{\pi}{6}}{\cos\frac{\pi}{6}}=\frac{\cos\left[\frac{6x+\pi}{12}-\frac{6x-\pi}{12}\right]}{\frac{\sqrt{3}}{2}}+\frac{2}{\sqrt{3}}\frac{\cos\left(\frac{6x+\pi}{12}\right).\cos\left(\frac{6x-\pi}{12}\right)+\sin\left(\frac{6x+\pi}{12}\right).\sin\left(\frac{6x-\pi}{12}\right)}{\sin\left(\frac{6x+\pi}{12}\right).\cos\left(\frac{6x-\pi}{12}\right)}\)

Ta được :

\(f\left(x\right)=\frac{2}{\sqrt{3}}\left[\int\frac{\cos\left(\frac{6x+\pi}{12}\right)}{\sin\left(\frac{6x+\pi}{12}\right)}dx-\int\frac{\sin\left(\frac{6x-\pi}{12}\right)}{\cos\left(\frac{6x-\pi}{12}\right)}\right]=\frac{2}{\sqrt{3}}\left(\ln\left|\sin\right|\left(\frac{6x+\pi}{12}\right)-\ln\left|\cos\right|\left(\frac{6x-\pi}{12}\right)\right)\)

\(=\frac{2}{\sqrt{3}}\ln\left|\frac{\sin\left(\frac{6x+\pi}{12}\right)}{\cos\left(\frac{6x-\pi}{12}\right)}\right|+C\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 8 2019 lúc 16:07

Đáp án C

Ta có  F ' ' x = f ' x = 1 + ln x