|5x-2| < 13 ( x thuộc Z)
a. P=(5x−1)2+2(1−5x)(4+5x)+(5x+4)2P=(5x−1)2+2(1−5x)(4+5x)+(5x+4)2
b. Q=(x−y)3+(y+x)3+(y−x)3−3xy(x+y)
tính
(5x-1)^2 + 2 ( 1 - 5x ) (4x+5x ) ( 5x + 4 ) ^2
\(\left(5x-1\right)^2+2\left(1-5x\right)\left(4+5x\right)+\left(5x+4\right)^2\)
\(=\left(5x-1\right)^2-2\left(5x-1\right)\left(5x+4\right)+\left(5x+4\right)^2\)
\(=\left[\left(5x-1\right)-\left(5x+4\right)\right]^2\)
\(=\left(5x-1-5x-4\right)^2\)
\(=\left(-5\right)^2\)
\(=25\)
kết quả phép chia (25x^5y - 20x^3y^2 - 5x^3y) : 5x^3y là:
A.5x^2y - 4y - x B.5x^2 + 4y C. 5x^2 - 4y D.5x^2 - 4y - 1
(5x2-10x) ÷ 5x + (5x +2)2 ÷ (5x +2)
\(\left(5x^2-10x\right):5x+\left(5x+2\right)^2:\left(5x+2\right)\\ =5x^2:5x-10x:5x+\left(5x+2\right)\\ =x-2+5x+2\\ =6x\)
Tính (5x+1)^2+(5x-1)^2-2*(5x+1)*(5x-1) tại x=1
A = (5\(x\) + 1)2 + (5\(x\) - 1)2 - 2.( 5\(x\) +1).(5\(x\) - 1) tại \(x\) = 1
Thay \(x\) = 1 vào A ta có:
A = (5.1 + 1)2 + (5.1 - 1)2 - 2.(5.1 + 1).(5.1 - 1)
A = 62 + 42 - 2.6.4
A = 36 + 16 - 48
A = 52 - 48
A = 4
5x+5x+1+5x+2+5x+3=1+2+3+...+87+88-42
\(5^x+5^{x+1}+5^{x+2}+5^{x+3}=1+2+3+...+87+88-4^2\)
=>\(5^x+5^x\cdot5+5^x\cdot25+5^x\cdot125=88\cdot\dfrac{\left(88+1\right)}{2}-16\)
=>\(156\cdot5^x=44\cdot89-16=3900\)
=>\(5^x=\dfrac{3900}{156}=25\)
=>x=2
a;(x^2-5x)^2+10(x^2-5x)+24=0 b;(x^2+5x)-2(x^2+5x)=24
Rút gọn biểu thức sau:
(x^2-5x+1)^2+2(5x-1)(x^2-5x+1)+(5x-1)^2
(x2-5x+1)2+2(5x-1)(x2-5x+1)+(5x-1)2
= [(x2-5x+1)+(5x-1)]2
= (x2-5x+1+5x-1)2
= (x2)2
= x4
Giải phương trình:
(5x+1)/(x^2+5) + (5x+2)/(x^2+4) + (5x+3)/(x^2+3) + (5x+4)/(x^2+2) = -4
Giải phương trình:
(5x+1)/(x^2+5) + (5x+2)/(x^2+4) + (5x+3)/(x^2+3) + (5x+4)/(x^2+2) = -4