Viết phương trình mặt phẳng (P) tiếp xúc với mặt cầu x 2 + y 2 + z 2 - 10 x + 2 y + 26 z + 170 = 0 .Và song song với hai đường thẳng a : x = - 5 + 2 t y = 1 - 3 t z = - 13 + 2 t , a ' : x = - 7 + 3 t ' y = - 1 - 2 t ' z = 8
Viết phương trình mặt phẳng tiếp xúc với mặt cầu ( S ) : ( x - 2 ) 2 + ( y + 1 ) 2 + ( z - 3 ) 2 = 9 tại điểm M(6; -2; 3).
A. 4x-y-26=0
B. 4x+y-26=0
C. 4x+y+26=0
D. 4x-y+26=0
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): \(x^2+y^2+z^2-2x+6y-8z-10=0\) và mặt phẳng (P): \(x+2y-2z=0\). Viết phương trình mặt phẳng (Q) song song với (P) và tiếp xúc với (S).
Trong không gian Oxyz, cho mặt cầu (S): x - 1 2 + y + 2 2 + ( z - 5 ) 2 = 9 . Phương trình nào dưới đây là phương trình mặt phẳng (P) tiếp xúc với mặt cầu (S) tại điểm A(2;-4;3)?
A. x – 6y + 8z – 50 = 0
B. x – 2y – 2z – 4 = 0
C. x – 2y – 2z + 4 = 0
D. 3x – 6y + 8z – 54 = 0
Mặt phẳng tiếp xúc với mặt cầu ( x - 2 ) 2 + ( y + 1 ) 2 + ( z - 3 ) 2 = 9 tại điểm M(6;-2;3) có phương trình là
Trong không gian Oxyz, cho mặt cầu (S):
x - 1 2 + y + 2 2 + z - 5 2 = 9 . Phương trình nào dưới đây là phương trình mặt phẳng (P) tiếp xúc với mặt cầu (S) tại điểm A(2;-4;3)?
A. x – 6y + 8z – 50 = 0
B. x – 2y – 2z – 4 = 0
C. x – 2y – 2z + 4 = 0
D. 3x – 6y + 8z – 54 = 0
Trong không gian Oxyz, cho mặt cầu (S) có phương trình là: ( x + 1 ) 2 + ( y - 4 ) 2 + ( z + 3 ) 2 = 36. Số mặt phẳng (P) chứa trục Ox và tiếp xúc với mặt cầu (S) là:
A. 0
B. 1
C. 2
D. Vô số
Đáp án A
Mặt cầu (S) có tâm I(-1;4;-3) và có bán kính R = 6. Gọi H là hình chiếu vuông góc của I trên trục Ox. Ta có H(-1;0;0) và IH=5.
Gọi K là hình chiếu vuông góc của I trên mặt phẳng (P). Ta có
d(I; (P)) = IK ≤ IH = 5 < R = 6
Do đó mặt phẳng (P) luôn cắt mặt cầu (S) theo một đường tròn. Vậy không tồn tại mặt phẳng (P) chứa Ox và tiếp xúc với (S)
Trong không gian với hệ tọa độ Oxyz viết phương trình mặt phẳng tiếp xúc với mặt cầu x - 1 2 + y 2 + z + 2 2 = 6 đồng thời song song với hai đường thẳng d 1 : x - 2 3 = y - 1 - 1 = z - 1 ; d 2 : x 1 = y + 2 1 = z - 2 - 1 .
A. [ x - y + 2 z - 3 = 0 x - y + 2 z + 9 = 0
B. [ x + y + 2 z - 3 = 0 x + y + 2 z + 9 = 0
C. x + y + 2 z + 9 = 0
D. x - y + 2 z + 9 = 0
Ta có: (S) có tâm I 1 , 0 , - 2 và bán kính R = 6 .
d 1 có VTCP là: u 1 → 3 , - 1 , - 1
d 2 có VTCP là: u 2 → 1 , 1 , - 1
Ta có:
Khi đó ta có phương trình (P) có dạng:
x + y + 2 z + d = 0
Mặt phẳng (p) tiếp xúc với mặt cầu
Chọn B.
Trong không gian Oxyz, phương trình mặt phẳng tiếp xúc với mặt cầu(S): (x-1)² + (y-2)² + (z-3)²=81 tại điểm P(-5;-4;6) là:
A. 7 x+8 y+67=0
B. 4 x+2 y-9 z+82=0
C. x-4 z+29=0
D. 2 x+2 y-z+24=0
Đáp án D
Mặt cầu (S) có tâm I(1;2;3).
Gọi (α) là mặt phẳng cần tìm. Do (α) tiếp xúc với (S) tại P nên mặt phẳng (α) đi qua P và có véc-tơ pháp tuyến
Phương trình mặt phẳng (α) là:
-6(x+5)-6(y+4)+3(z-6) = 0 <=> 2x + 2y - z + 24 = 0.
Trong không gian Oxyz, cho điểm M (1;1;-2) và mặt phẳng (α) : x - y - 2z = 2. Viết phương trình mặt cầu (S) có tâm M tiếp xúc với mặt phẳng (α)
Lời giải:
Bán kính mặt cầu là:
\(R=d(M, (a))=\frac{|1-1-2(-2)-2|}{\sqrt{1^2+1^2+2^2}}=\frac{\sqrt{6}}{3}\)
PT mặt cầu $(S)$ là:
$(x-1)^2+(y-1)^2+(z+2)^2=\frac{2}{3}$
Trong không gian với hệ trục Oxyz cho điểm A(2;1;3) và đường thẳng có phương trình ( d ) : x - 1 2 = y - 2 - 1 = z 1 . Mặt phẳng (P) chứa A và d. Viết phương trình mặt cầu tâm O tiếp xúc với mặt phẳng (P).
A. x 2 + y 2 + z 2 = 12 5
B. x 2 + y 2 + z 2 = 3
C. x 2 + y 2 + z 2 = 6
D. x 2 + y 2 + z 2 = 24 5
Đáp án D.
( d ) : x - 1 2 = y - 2 - 1 = z 1 đi qua B(1;2;0) có vecto chỉ phương n d → = 2 ; - 1 ; 1
Với B A → = 1 ; - 1 ; 3 , vecto pháp tuyến của (P) là: B A → , u d → = 2 ; 5 ; 1
⇒ P : 2 x - 2 + 5 y - 1 + z - 3 = 0 ⇔ 2 x + 5 y + z - 12 = 0
Bán kính của mặt cầu cần tìm là d O , P = 2 30 5 .