Cho hình chóp S . A B C có S A = S B = S C = a , AS B ^ = 60 0 , B S C ^ = 90 0 và C S A ^ = 120 0 . Tính khoảng cách d giữa hai đường thẳng AC và SB.
A. d = a 3 4 .
B. d = a 3 3 .
C. d = a 22 11 .
D. d = a 22 22 .
Kẻ \(BK\perp AC\Rightarrow BK\perp\left(SAC\right)\)
\(\Rightarrow BK=d\left(B;\left(SAC\right)\right)\)
\(\dfrac{1}{BK^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Rightarrow BK=\dfrac{AB.AC}{\sqrt{AB^2+AC^2}}=\dfrac{a\sqrt{3}}{2}\)
Kẻ \(CP\perp BH\Rightarrow CP\perp\left(SBH\right)\)
\(\Rightarrow CP=d\left(C;\left(SBH\right)\right)\)
\(\widehat{CBP}=\widehat{ACB}=30^0\Rightarrow CH=BC.sin30^0=\dfrac{a\sqrt{3}}{2}\)
\(BH=\dfrac{AC}{2}=\dfrac{1}{2}\sqrt{AB^2+AC^2}=a\)\(\Rightarrow SH=\sqrt{SB^2-BH^2}=a\)
Kẻ \(HE\perp BC\) , kẻ \(HF\perp SE\Rightarrow HF=d\left(H;\left(SBC\right)\right)\)
\(HE=CH.sin30^0=\dfrac{a}{2}\)
\(\dfrac{1}{HF^2}=\dfrac{1}{SH^2}+\dfrac{1}{HE^2}\Rightarrow HF=\dfrac{SH.HE}{\sqrt{SH^2+HE^2}}=\dfrac{a\sqrt{5}}{5}\)
Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy, SA = a 2 . Một mặt phẳng đi qua A vuông góc với SC cắt SB, SD, SC lần lượt tại B', D', C'. Thể tích khối chóp S. AB'C'D' là:
A. V = 2 a 3 3 9
B. V = 2 a 3 2 3
C. V = a 3 2 9
D. V = 2 a 3 3 3
Chọn C
Dựa vào giả thiết ta có B', C', D' lần lượt là hình chiếu của A lên SB, SC, SD.
Tam giác SAC vuông cân tại A nên C' là trung điểm của SC.
Trong tam giác vuông SAB' ta có:
Cho hình chóp S. ABCD có đáy là hình thang vuông tại A, B. Biết SA vuông góc (ABCD), AB = BC = a, AD = 2a, SA = a 2 . Gọi E là trung điểm của AD. Tính bán kính mặt cầu đi qua các điểm S, A, B, C, E.
A. a 30 6
B. a 6 6
C. a 3 2
D. a
ho hình chóp tứ giác S . A B C D , M là một điểm trên cạnh S C , N là trên cạnh B C . Tìm giao điểm của đường thẳng S D với mặt phẳng ( A M N ) .
Chọn mp(SBD) có chứa SD
Gọi O là giao của AC và BD
K là giao của SO với AN
L giao của BD với AN
\(\left\{{}\begin{matrix}K=SO\cap AN\\SO\subset\left(SBD\right)\\AN\subset\left(AMN\right)\end{matrix}\right.\Leftrightarrow K\in\left(SBD\right)\cap\left(AMN\right)\)
\(\left\{{}\begin{matrix}L=BD\cap AN\\SO\subset\left(SBD\right)\\AN\subset\left(AMN\right)\end{matrix}\right.\Leftrightarrow L\in\left(SBD\right)\cap\left(AMN\right)\)
=>(SBD) giao (AMN)=KL
Gọi P là giao của KL với SD
=>P=SD giao (AMN)
Cho khối chóp S.ABCDS.ABCD có đáy là hình chữ nhật, AB=2a,AD=2\sqrt{3}a,SAAB=2a,AD=23a,SA vuông góc với đáy và mặt phẳng (SBC)(SBC) tạo với đáy một góc 60^o60o. Thể tích khối chóp S.ABCDS.ABCD bằng
Cho hình chóp tứ giác đều S. ABCD có cạnh AB=10cm. Cạnh bên SA=12cm a) tính đường chéo AC b) tính đường cao SO c) tính thể tích hình chóp
Cho hình chóp S.ABCD có đáy là hình bình hành. Hỏi có tất cả bao nhiêu mặt phẳng cách đều 5 điểm S, A, B, C, D ?
A. 2 mặt phẳng.
B. 5 mặt phẳng
C. 1 mặt phẳng
D. 4 mặt phẳng.
Đáp án B
Mặt phẳng cách đều 5 điểm là mặt phẳng mà khoảng cách từ 5 điểm đó đến mặt phẳng là bằng nhau.
Có 5 mặt phẳng thỏa mãn là:
+ Mặt phẳng đi qua trung điểm của AB,CD và song song với SBC .
+ Mặt phẳng đi qua trung điểm của AB,CD và song song với SAD .
+ Mặt phẳng đi qua trung điểm của AD,BC và song song với SAB .
+ Mặt phẳng đi qua trung điểm của AD,BC và song song với SCD .
+ Mặt phẳng đi qua trung điểm của SA,SB,SC,SD.
Đề thiếu dữ liệu để xác định độ dài SA rồi bạn
Trong không gian, cho hình chóp S.ABC có SA, AB, BC đôi một vuông góc với nhau và SA=a, AB=b, BC=c. Mặt cầu đi qua S, A, B, C có bán kính bằng