Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 3 2018 lúc 15:16

Đáp án là C

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 10 2017 lúc 12:48

Đáp án C

Ta có: A B C ^ = 120 ∘ ⇒ B A D ^ = 60 ∘ suy ra tam giác ABD là tam giác đều cạnh a. Khi đó A’.ABD là chóp đều cạnh đáy bằng a. Như vậy hình chiếu vuông góc của A’ lên mặt đáy trùng với trọng tâm tam giác ABD.

Ta có: A ' H = HA  tan 60 ∘ = a 3 3 . 3 = a  

⇒ V A ' A B D = 1 3 A ' H . S A B C = a 3 3 12  

Do đó  V A B C D . A ' B ' C ' D ' = 3 V A ' . A B C D = 6 V A ' A B D = a 3 3 2 .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 11 2017 lúc 15:09

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 1 2017 lúc 4:25

Đáp án là A

+ Tính 

+  Tính A'H:

Ta có:  ( Vì AH là hình chiếu của AA'  trên mp(ABCD)).

Suy ra: 

Vậy: 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 6 2017 lúc 14:08

Đáp án là C

Gọi H là hình chiếu của A’ trên (ABCD). Dễ thấy góc 

Dễ dàng tính được diện tích đáy

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 3 2018 lúc 15:48

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 2 2017 lúc 7:15

a) Sxq = 2.P.H (p: chu vi đáy; h: chiều cao)

= 3(3 + 3).4 = 48(cm2)

b) Gọi O là giao điểm của AC và BD. Vì tứ giác ABCD là hình thoi nên AC ⊥ BD tại O và có ∠ABC = 60o => ∠ABO = 30o

ΔABO là nửa tam giác đều nên

Trung
Xem chi tiết
Hà Quang Minh
25 tháng 7 2023 lúc 20:14

Gọi O là tâm hình thoi ABCD.

Do ABCD là hình thoi mà \(\widehat{ABC}=60^o\)

⇒ Tam giác ABC đều. 

⇒ \(BO=\dfrac{AB\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{2}\)

⇒ \(BD=2BO=a\sqrt{3}\)

\(V_{ABCD.A'B'C'D'}=AA'\cdot S_{ABCD}=3a\cdot\dfrac{1}{2}\cdot a\sqrt{3}\cdot a=\dfrac{3a\sqrt{3}}{2}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 10 2018 lúc 10:38

Đáp án C

Ta có: A B C ^ = 120 ∘ ⇒ B A D ^ = 60 ∘  suy ra tam giác ABD là tam giác đều cạnh a. Khi đó A’.ABD là chóp đều cạnh đáy bằng a. Như vậy hình chiếu vuông góc của A’ lên mặt đáy trùng với trọng tâm tam giác ABD.