Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ngo thu trang
Xem chi tiết
Hoàng Phúc
27 tháng 1 2016 lúc 20:03

K=4

Trí dũng
Xem chi tiết
tran_thi_thao_8a
Xem chi tiết
nguyen hong lan
6 tháng 4 2018 lúc 21:54

xet hiệu 2a4+1-2a3-a2=a4-2a3+a2+a4-2a2+1=(a2-a)+(a2+1)>=0 

đcpcm 

MinYeon Park
Xem chi tiết
Nguyễn Thị BÍch Hậu
15 tháng 6 2015 lúc 12:01

1) \(\Delta=m^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\ge0\)với mọi m=> pt luôn có nghiệm với mọi m

a) áp dụng hệ thức vi ét ta có: \(x1+x2=-m\)\(x1.x2=m-1\)

 \(B=x1^2+x2^2-4\left(x1+x2\right)=\left(x1+x2\right)^2-2x1x2-4\left(x1+x2\right)=m^2-2\left(m-1\right)-4\left(-m\right)=m^2+2m-2\)

\(=\left(m^2+2m+1\right)-3=\left(m+1\right)^2-3\ge-3\Rightarrow MinB=-3\Leftrightarrow m=-1\)

2) \(2x^2+2x+3x+3=0\Leftrightarrow\left(x+1\right)\left(2x+3\right)=0\Rightarrow\)x1=-1 và x2=-3/2

tổng 2 nghiệm \(x1^2+1+x2^2+1=1^2+1+\left(-\frac{3}{2}\right)^2+1=\frac{21}{4}\)

tích 2 nghiệm \(=\left(1^2+1\right)\left(\frac{3}{2}^2+1\right)=\frac{13}{2}\)=> PT cần tìm: \(x^2-\frac{21}{4}x+\frac{13}{2}=0\)

 

Đinh thủy tiên
Xem chi tiết
haphuong01
28 tháng 7 2016 lúc 15:01

Hỏi đáp Toán

william
Xem chi tiết
Le Uyen Linh Nguyen
Xem chi tiết
zZz Cool Kid_new zZz
17 tháng 4 2019 lúc 21:02

Chia làm 3 khoảng để xét.

Khoảng thứ nhất:\(x< 0\)

Khi đó:\(f\left(x\right)=x^6-x^5+x^4-x^3+x^2-x+1\)

\(=x^5\left(x-1\right)+x^3\left(x-1\right)+x\left(x-1\right)+1\)

Do \(x< 0\Rightarrow\hept{\begin{cases}x^5< 0\\x-1< 0\end{cases}}\Rightarrow x^5\left(x-1\right)>0\)

Tương tự ta có:\(\hept{\begin{cases}x^3\left(x-1\right)>0\\x\left(x-1\right)>0\end{cases}}\)

Khi đó \(x^5\left(x-1\right)+x^3\left(x-1\right)+x\left(x-1\right)+1>0\)

Khoảng thứ 2:\(0< x< 1\)

Khi đó \(f\left(x\right)=x^6-x^5+x^4-x^3+x^2-x+1\)

\(=x^6-x^4\left(x-1\right)-x^2\left(x-1\right)-\left(x-1\right)\)

Do \(0< x< 1\Rightarrow x-1< 0\Rightarrow\hept{\begin{cases}x^4\left(x-1\right)< 0\\x^2\left(x-1\right)< 0\\x-1< 0\end{cases}}\Rightarrow\hept{\begin{cases}-x^4\left(x-1\right)>0\\x^2\left(x-1\right)>0\\-\left(x-1\right)>0\end{cases}}\)

\(\Rightarrow x^6-x^4\left(x-1\right)-x^2\left(x-1\right)-\left(x-1\right)>0\) vì \(x^6>0\)

Khoảng thứ 3:\(1< x\)

Khi đó:\(\hept{\begin{cases}x^5\left(x-1\right)>0\\x^3\left(x-1\right)>0\\x\left(x-1\right)>0\end{cases}}\Rightarrow x^5\left(x-1\right)+x^3\left(x-1\right)+x\left(x-1\right)+1>0\)

Xét \(x=0\Rightarrow f\left(x\right)=1>0\)

Xét \(x=1\Rightarrow f\left(x\right)=1-1+1-1+1-1+1=1>0\)

\(\Rightarrowđpcm\)

Phương Nhi
Xem chi tiết
Lê Nguyễn Trường Huy
17 tháng 4 2016 lúc 10:39

Cho phương trình: x- (2m - 1)x - m = 0       

Co \(\Delta=\left(-\left(2m-1\right)\right)^2-4.1.\left(-m\right)=4m^2-4m+1+4m=4m^2+1>0\)

Vi \(\Delta>0\) nen PT luon co ngiem phan biet voi moi gia tri cua m

Đặng Hồng Phong
Xem chi tiết
Nguyễn Huy Tú
12 tháng 4 2022 lúc 18:34

a, Với x khác 1 

\(A=\dfrac{x^2+x+1-3x^2+2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1-x}{\left(x-1\right)\left(x^2+x+1\right)}=-\dfrac{1}{x^2+x+1}\)

b, Ta có \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\Rightarrow\dfrac{-1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}< 0\)

Vậy với x khác 1 thì bth A luôn nhận gtri âm