\(P=\frac{2x+2}{\sqrt{x}}+\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\)
a) Rút gọn P
b) So sánh P với 5
c) Với mọi giá trị làm P có nghĩa, chứng minh biểu thức \(\frac{8}{P}\)chỉ nhận đúng một giá trị nguyên
Chứng minh biểu thức: \(P=(x^3-4x-1)^{2010}\) có giá trị là một số tự nhiên với \(x=\frac{\sqrt[3]{10+6\sqrt{3}}(\sqrt{3}-1)}{\sqrt{6+2\sqrt{5}}-\sqrt{5}}\)
Cho biểu thức : A=\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
a, Rút gọn A
b,Tìm các giá trị của x để A <1
c,Tìm các giá trị nguyên của x sao cho A nguyên
tìm giá trị của x để biểu thức có nghĩa
\(\frac{1}{\sqrt{x-\sqrt{x-0.5}}}\)
\(\frac{1}{1-\sqrt{x^2-2}}\)
1.cho biểu thức \(P=\left(\frac{2x+\sqrt{x}}{x\sqrt{x}-1}-\frac{2}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\)
a, rút gọn biểu thức P
b,tìm các giá trị của x để biểu thức P có giá trị nguyên
2.. tìm các cặp số nguyên(x;y) thỏa mãn \(x^2+xy-3x-y-5=0\)
3..giải phương trình \(2\sqrt{2x+4}+4\sqrt{2-x}=\sqrt{9x^2+16}\)
giả sử \(x_1,x_2\) là nghiệm của phương trình \(x^2-2\sqrt{5}x+2\)=0 Tính giá trị biểu thức E=\(\dfrac{x_1^2+x_1x_2+x^2_2}{x_1^2+x^2_2}\)
Cho biểu thức: \(A=\dfrac{1}{2+2\sqrt{a}}+\dfrac{1}{2-2\sqrt{a}}-\dfrac{a^2+1}{1-a^2}\)
a, Tìm đkxđ và rút gọn biểu thức A
b, Tìm giá trị của a; biết A<\(\dfrac{1}{3}\)
Tính giá trị của x, biết:
\(\dfrac{2}{\sqrt{x-3}}=4\)
Cho biểu thức A=\(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\) (với \(x\ge0;x\ne9\))
a) Rút gọn A
b) Tìm x nguyên để A nguyên