Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Duong Thi Nhuong
Xem chi tiết
Hoàng Tử Lớp Học
Xem chi tiết
Hoàng Lê Bảo Ngọc
2 tháng 11 2016 lúc 19:11

Xét : 

1. Nếu x = 2016 hoặc x = 2017 thì thỏa mãn đề bài

2. Nếu \(x< 2016\) thì \(\left|x-2016\right|^{2016}>0\) , \(\left|x-2017\right|^{2017}>1\)

Suy ra \(\left|x-2016\right|^{2016}+\left|x-2017\right|^{2017}>1\)=> Vô nghiệm.

3. Nếu \(x>2017\) thì \(\left|x-2016\right|^{2016}>1\) , \(\left|x-2017\right|^{2017}>0\)

Suy ra \(\left|x-2016\right|^{2016}+\left|x-2017\right|^{2017}>1\) => Vô nghiệm.

Vậy pt có hai nghiệm là ............................ 

Phạm Phương Linh
4 tháng 3 2018 lúc 14:50

nếu 2016<x<2017 thì sao?

Tôi Là Ai
Xem chi tiết
Tôi Là Ai
Xem chi tiết
Hoàng Lê Bảo Ngọc
2 tháng 11 2016 lúc 19:11

Bài trên mình đã giải rồi, hai nghiệm là x = 2016 và x = 2017

Tôi Là Ai
Xem chi tiết
Huy Rio
3 tháng 11 2016 lúc 17:43

Xét:

1.Nếu \(x=2016\)hoặc \(x=2017\)thì thỏa mãn đề bài

2. Nếu \(x< 2016\)thì l\(x-2016\)l\(^{2016}\)>0, lx-2017l\(^{2017}\)>1

=>lx-2016l\(^{2016}\)+lx-2017l\(^{2017}\)>1 => vô nghiệm 

3.Nếu x>2017 thì lx-2016l\(^{2016}\)>1,lx-2017l\(^{2017}\)>0

=>lx-2016l\(^{2016}\)+lx-2017l\(^{2017}\)>1=> vô nghiệm

Vậy phương trình có 2 nghiệm là ..................

Lê Nguyễn Trường Chinh
Xem chi tiết
Nguyễn Linh Chi
18 tháng 1 2019 lúc 10:16

\(\Leftrightarrow\hept{\begin{cases}\left|9x-2016\right|>15\\\left|9x-2016\right|< 2017\end{cases}}\)Em tách như thế này rồi giải các bất phương trình ra nhé :)

\(\hept{\begin{cases}\orbr{\begin{cases}9x-2016>15\\9x-2016< -15\end{cases}}\\-2017< 9x-2016< 2017\end{cases}}\)

Forever AF
Xem chi tiết
nguyễn kim thương
7 tháng 5 2017 lúc 19:47

                     \(\left|x-2016\right|+\left|x-2017\right|=1\)                                 ( 1 )

a) xét khoảng   \(x< 2016\),  ( 1 ) có dạng : 

\(2016-x+2017-x=1\), tìm được   \(x=2016\), không thuộc khoảng đang xét 

b) xét khoảng    \(2016\le x\le2017\),  ( 1 )  có dạng :

\(x-2016+x-2017=1\) , tìm được   \(x=2017\)

phương trình đúng với mọi x thuộc khoảng đang xét , tức là :   \(2016\le x\le2017\) 

c) xét khoảng    \(x>2017\), (1) có dạng :

\(x-2016+x-2017=1\), tìm được  \(x=2017\)không thuộc khoảng đang xét .

VẬY TẬP NGHIỆM CỦA PHƯƠNG TRÌNH LÀ : S = {  \(x\backslash2016\le x\le2017\)}

TK MK NKA TH@NKSSS !!!!!!!!!!!!!!!!!

Minh Hiếu
Xem chi tiết
Akai Haruma
14 tháng 10 2021 lúc 21:05

Lời giải:

a.

PT $\Leftrightarrow (x+3)^2=2016^{2020}-17^{91}+9$

Ta thấy: $2016^{2020}-17^{91}+9\equiv 0-(-1)^{91}+0\equiv -1\equiv 2\pmod 3$

Mà 1 scp thì chia $3$ chỉ dư $0$ hoặc $1$ nên pt vô nghiệm.

b.

$x^2=2016(y-1)^2-2017^{2019}\equiv 0-1^{2019}\equiv 3\pmod 4$
Mà 1 scp chia $4$ chỉ dư $0$ hoặc $1$ nên vô lý.

Vậy pt vô nghiệm.

c.

$(x-1)^2=2017^{2017}+1\equiv 1^{2017}+1\equiv 2\pmod 4$
Mà 1 scp khi chia cho $4$ chỉ dư $0$ hoặc $1$ nên vô lý

Vậy pt vô nghiệm

d.

$(x+2)^2=2018^{10}+4\equiv (-1)^{10}+1\equiv 2\pmod 3$

Mà 1 scp khi chia $3$ dư $0$ hoặc $1$ nên vô lý

Vậy pt vô nghiệm.

Lạc Hy
Xem chi tiết