Cho biểu thức f ( x ) = 1 2018 x + 2018 . Tính tổng
S = 2018 [ f ( - 2017 ) + f ( - 2016 ) + . . . + f ( 0 ) + f ( 1 ) + . . . + f ( 2018 ) ]
Cho hàm số f(x) có đạo hàm trên R và thỏa mãn f(2016) = a, f(2017) = b, a ; b ∈ ℝ . Giá trị I = ∫ 2017 2016 2015 f ' x . f 2014 x d x bằng:
A. I = b 2017 - a 2017
B. I = a 2016 - b 2016
C. I = a 2015 - b 2015
D. I = b 2015 - a 2015
Giải bất phương trình 2016 x + 2016 1 - x ≤ 2017
A. 1 ≤ x ≤ 2016
B. 0 ≤ x ≤ 1
C. x ≤ 1 hoặc x ≥ 2016
D. x ≤ 0 hoặc x ≥ 1
Hỏi có bao nhiêu giá trị nguyên x trong đoạn [-2017; 2017] thỏa mãn bất phương trình log 3 x - log 5 x ≤ log 3 x . log 5 x
A. 2017
B. 4026
C. 2018
D. 2016
Cho hàm số f ( x ) = a x 4 + b x 2 + c v ớ i a > 0 , c > 2017 , a + b + c < 2017 . Số cực trị của hàm số y = | f ( x ) - 2017 | là
A. 1
B. 5
C. 3
D. 7
Cho hàm số f(x) xác định trên R\{1} thỏa mãn f ' ( x ) = 1 x - 1 , f ( 0 ) = 2017 ; f ( 2 ) = 2018 . Tính S = f(3)-f(-1)
A. S = 1
B. S = ln2
C. S = ln4035
D. S = 4
Giải bất phương trình 1 2 x 2 > 2 x . Gọi tập nghiệm là S. Tìm S.
A. (-1;0)
B. 0 ; + ∞
C. (0;1)
D. Rỗng
Số nghiệm thực của phương trình
x 5 + x x 2 - 2 -2017=0
A. 4
B. 5
C. 2
D. 3
Cho hàm số f x = a x 4 + b x 2 + c với a > 0 , c > 2017 và a + b + c < 2017 . Số cực trị của hàm số y = f x − 2017 là
A. 1
B. 5
C. 3
D. 7