Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Vũ Anh Khôi
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 12 2021 lúc 19:33

a: Xét ΔABD và ΔEBD có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔABD=ΔEBD

Nguyễn Thị Khánh Linh
22 tháng 12 2021 lúc 20:05

a) Thấy 

Từ đây ta xét t/g MAC và BAN ta có:

=>MA=BA; AC=AN

=>

=>ΔMAC=ΔBAN(c−g−c)⇒MC=BNΔMAC=ΔBAN(c−g−c)⇒MC=BN

đpcm.

b)

Ta gọi giao điểm của MC  và BN là 1 điểm D

Ta có: ˆDBA=ˆDMA(ΔMAC=ΔBAN(c−g−c))DBA^=DMA^(ΔMAC=ΔBAN(c−g−c))

Nên ˆMBD+ˆBMD=ˆMBA+ˆDBA+ˆBMD=ˆMBA+ˆDMA+ˆBMD=ˆMBAMBD^+BMD^=MBA^+DBA^+BMD^=MBA^+DMA^+BMD^=MBA^

+ˆBMA=90o+BMA^=90o

Xét t/g MBD có ˆMBD+ˆBMD=90o⇒ˆBMD=90oMBD^+BMD^=90o⇒BMD^=90o

⇒BN⊥MC⇒BN⊥MC

Bổ sung D giao điểm nhé vào hình nha bn.

c) Ta giả sử như ABC đều cạnh 4cm (theo đề bài) thì sẽ có: AM=AC=AB=NA=4cm

Áp dụng định lý pi-ta-go ta có:

Cho t/g MAB và NAC thì MB=NC=4√2(cm)42(cm)

Khi ABC đều cạnh 4cm thì AMC = NAB là t/g  vuông cân có  góc ở đỉnh : 90o+60o=150o

=>ˆAMC=ˆACMAMC^=ACM^= (180o-150o):2=15o

Thì 

Lại có 

Vì t/gMAN cân tại A nên = (180o-120o) : 2 =30o

=> 

=>

=> BC//MN ( so le trong)

đpcm.

ngoc anh nguyễn
Xem chi tiết
Thanh Hoàng Thanh
11 tháng 1 2022 lúc 11:27

a) Xét tam giác ABD và tam giác EBD:

+ AB = EB (gt).

+ BD chung.

\(\widehat{ABD}=\widehat{EBD}\) (BD là phân giác).

\(\Rightarrow\) Tam giác ABD = Tam giác EBD (c - g - c).

b) Tam giác ABD = Tam giác EBD (cmt).

\(\Rightarrow\) \(\widehat{BAD}=\widehat{BED}\) (2 góc tương ứng).

Mà \(\widehat{BAD}=90^o\) (Tam giác ABC vuông tại A).

\(\Rightarrow\) \(\widehat{BED}=90^o\)

c) Xét tam giác ABE: BA = BE (gt).

\(\Rightarrow\) Tam giác ABE cân tại B.

Mà BD là phân giác (gt).

\(\Rightarrow\) BD là đường cao (Tính chất tam giác cân).

\(\Rightarrow\) \(BD\perp AE.\)

77- 27- Phan Hoàng Phúc
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 1 2022 lúc 14:00

a: Xét ΔABD và ΔEBD có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔABD=ΔEBD

Dương Nguyễn
Xem chi tiết
Nguyễn Hoàng Hưng
Xem chi tiết
Yen Nhi
22 tháng 12 2021 lúc 19:52

Answer:

Phần c) thì nhờ các cao nhân khác thoii.

C E D A B 1 2

a) Ta xét tam giác ABD và tam giác EBD:

AB = EB (gt)

BD cạnh chung

\(\widehat{B_1}=\widehat{B_2}\)

Vậy tam giác ABD = tam giác EBD (c.g.c)

\(\Rightarrow DE=DA\)

b) Theo phần a), tam giác ABD = tam giác EBD

\(\Rightarrow\widehat{BAD}=\widehat{BED}=90^o\)

Khách vãng lai đã xóa
Minh Huy Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 3 2022 lúc 19:55

a: Xét ΔABD và ΔEBD có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó:ΔABD=ΔEBD

b: Xét ΔADM vuông tại A và ΔEDC vuông tại E có

DA=DE

\(\widehat{ADM}=\widehat{EDC}\)

Do đó:ΔADM=ΔEDC

Suy ra: \(\widehat{BME}=\widehat{BCA}\)

Xét ΔBEM vuông tại E và ΔBAC vuông tại A có

BE=BA

\(\widehat{EBM}\) chung

Do đó:ΔBEM=ΔBAC

Suy ra: ME=CA

Nguyễn Tuấn Thành
Xem chi tiết
Thao Nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 12 2020 lúc 22:46

a) Xét ΔABD và ΔEBD có 

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔABD=ΔEBD(c-g-c)

b) Ta có: ΔABD=ΔEBD(cmt)

nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{BED}=90^0\)

ツhuy❤hoàng♚
Xem chi tiết
OH-YEAH^^
11 tháng 12 2021 lúc 20:54

Hình bn ơi

Nguyễn Lê Phước Thịnh
11 tháng 12 2021 lúc 20:55

a: Xét ΔBAD và ΔBED có 

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED