Cho hàm số f ( x ) = 1 + C 10 1 x + C 10 2 x 2 + . . . + C 10 10 x 10 . Số điểm cực trị của hàm số đã cho bằng
A. 10
B. 0
C. 9
D. 1
Câu4 :Cho hàm số y = f(x) = 2x. Khẳng định nào sau đây đúng? A. f(0) = 0 B. f(1) = 6 C. f(-1) = 10 D. f(2) = -4 Câu 5:Một hàm số được cho bẳng công thức y = f(x) = x2 ( x bình phương) Khẳng định nào sau đây đúng? A. f(1) = 6 Câu6:Cho hàm số y = f(x) = 2 + 8x. Khẳng định nào sau đây đúng? A. f(0) = 0 B. f(1) = 10 C. f(-1) = 10 D. f(2) = -4 Câu7:Một hàm số được cho bẳng công thức y = f(x) = 2x. Tính f(-5) + f(5). KẾT QUẢ ĐÚNG LÀ A. 0 B. 25 C. 50 D. 10
Cho hàm số \(f(x) = \sqrt {4 + 3u(x)} \) với \(u(1) = 7,u'(1) = 10\). Khi đó \(f'(1)\) bằng
A. 1.
B. 6 .
C. 3 .
D. -3 .
\(f\left(x\right)=\sqrt{4+3u\left(x\right)}\)
\(\Leftrightarrow f'\left(x\right)=\dfrac{\left(4+3u\left(x\right)\right)'}{2\sqrt{4+3u\left(x\right)}}=\dfrac{3u'\left(x\right)}{2\cdot\sqrt{4+3u\left(x\right)}}\)
\(f'\left(1\right)=\dfrac{3\cdot u'\left(1\right)}{2\cdot\sqrt{4+3u\left(1\right)}}=\dfrac{3\cdot10}{2\cdot\sqrt{4+3\cdot7}}=3\)
=>Chọn C
cho hàm số f(x) = \(\left\{{}\begin{matrix}\sqrt{x-1},x\ge2\\\dfrac{1}{x-3},x< 2\end{matrix}\right.\) chọn phát biểu sai:
a. f(2)=1
b. f(0)=\(\dfrac{-1}{3}\)
c. f(1)=0
d. f(10)=3
Cho hàm số y=f(x)=(m-2)x có đồ thị đi qua điểm A(10;-15)
a) Tìm m
b) Vẽ đồ thị hàm số
c) Tính f(-2); f(-1); f(0); f(1/2)
d) Chứng tỏ rằng: f(-4)-f(-6)=f(2)
a: Thay x=10 và y=-15 vào f(x), ta được:
10m-20=-15
=>10m=5
hay m=1/2
Cho hàm số y = f(x) = 2 - 8x. Khẳng định nào sau đây đúng?
A. f (0) = 0 B. f (1) = 6 C. f (-1) = 10 D. f (2) = -4
Cho hàm số y = f(x) = |-5x|, kết quả nào sau đây là đúng?
A. f(-2) = -10 B. f(-7) = 35 C. f(-3) = -15 D. f(1) = 1.
Đạo hàm y 0 = −3x 2 + 6x + m − 1. Hàm số đã cho đồng biến trên khoảng (0; 3) khi và chỉ khi y 0 > 0, ∀x ∈ (0; 3). Hay −3x 2 + 6x + m − 1 > 0, ∀x ∈ (0; 3) ⇔ m > 3x 2 − 6x + 1, ∀x ∈ (0; 3) (∗). Xét hàm số f(x) = 3x 2 − 6x + 1 trên đoạn [0; 3] có f 0 (x) = 6x − 6; f 0 (x) = 0 ⇔ x = 1. Khi đó f(0) = 1, f(3) = 10, f(1) = −2, suy ra max [0;3] f(x) = f(3) = 10. Do đó (∗) ⇔ m > max [0;3] f(x) ⇔ m > 10. Vậy với m > 10 thì hàm số đã cho đồng biến trên khoảng (0; 3).
Cho hàm số f(x) có đạo hàm f'(x) thỏa mãn các đẳng thức ∫ 0 1 ( 2 x - 1 ) f ' ( x ) d x = 10 , f ( 1 ) + f ( 8 ) = 0 . Tính I = ∫ 0 1 f ( x ) d x .
A. I = 2.
B. I = 1.
C. I = -1.
D. I = -2.
Cho hàm số f ( x ) = ( 1 - x + x 2 ) 10 Giá trị đạo hàm cấp 5 của hàm số tại x o = 1 là
A. 34848
B. 30240
C. 125240
D. 174240
Cho hàm số f(x) có f ( x ) = ( x + 1 ) 4 ( x - 2 ) 3 ( 2 x + 3 ) 7 ( x - 1 ) 10 . Tìm cực trị f(x)
A. 3
B. 2
C. 1
D. 4
Chọn B.
Xét :
Có nghiệm bội chẵn x = - 1 , x = 1 nên dấu của f’(x) qua hai nghiệm này không đổi dấu => x = 1 và x = - 1 không là cực trị
Có nghiệm bội lẻ x = 2 , x = - 3 2 , nên nó là hai cực trị
Kết luận: Hàm số có hai cực trị.