Cho hình nón có đường sinh là a, góc giữa đường sinh và đáy là α . Tính diện tích xung quanh hình nón.
Cho hình nón có đường sinh là a, góc giữa đường sinh và đáy là α . Tính diện tích xung quanh của hình nón.
A. 2 πa 2 sinα
B. πa 2 sinα
C. 2 πa 2 cos α
D. πa 2 cos α
Một hình nón tròn xoay có đỉnh là D, tâm của đường tròn đáy là O, đường sinh bằng l và có góc giữa đường sinh và mặt phẳng đáy bằng α . Tính diện tích xung quanh của hình nón và thể tích khối nón được tạo nên.
Gọi r là bán kính của đường tròn đáy.
Ta có OA = r = l.cos α (với O là tâm của đường tròn đáy và A là một điểm trên đường tròn đó).
Ta suy ra: S xq = πrl = πl 2 cosα
Khối nón có chiều cao h = DO = lsin α . Do đó thể tích V của khối nón được tính theo công thức
Vậy :
Cho hình trụ (T) có hai hình tròn đáy là (O) và (O'). Xét hình nón (N) có đỉnh O', đáy là hình tròn (O) và đường sinh hợp với đáy một góc α . Biết tỉ số giữa diện tích xung quanh hình trụ (T) và diện tích xung quanh hình nón (N) bằng 3 . Tính số đo góc α .
Cho hình nón tròn xoay có đỉnh là S, O là tâm của đường tròn đáy, đường sinh bằng a 2 và góc giữa đường sinh và mặt phẳng đáy bằng 60°. Diện tích xung quanh S xq của hình nón và thể tích V của khối nón tương ứng là:
A. S xq = πa 2 ; V = πa 3 6 12
B. S xq = πa 2 2 ; V = πa 3 3 12
C. S xq = πa 2 2 ; V = πa 3 6 4
D. S xq = πa 2 ; V = πa 3 6 4
Đáp án A
Gọi A là một điểm thuộc đường tròn đáy hình nón. Theo giải thiết ta có đường sinh SA = a 2 và góc giữa đường sinh và mặt phẳng đáy là SAO ^ = 60°.
Cho biết hiệu đường sinh và bán kính đáy của một hình nón là a, góc giữa đường sinh và mặt đáy là α . Tính diện tích mặt cầu nội tiếp hình nón
Đáp án B.
Gọi R là bán kính đáy hình nón, r là bán kính mặt cầu nội tiếp hình nón
Cho biết hiệu đường sinh và bán kính đáy của một hình nón là a, góc giữa đường sinh và mặt đáy là α. Tính diện tích mặt cầu nội tiếp hình nón
A. S m c = 3 π a 2 c o t 2 α
B. S m c = 4 π a 2 c o t 2 α
C. S m c = 2 π a 2 c o t 2 α
D. S m c = π a 2 c o t 2 α
Cho hình trụ trục OO', đường tròn đáy (C) và (C'). Xét hình nón đỉnh O', đáy (C) có đường sinh hợp với đáy góc α ( 0 ∘ < α 90 ∘ ) . Cho biết tỉ số diện tích xung quanh của hình lăng trụ và hình nón bằng 3 . Tính giá trị α .
A. 30 ∘ .
A. 45 ∘ .
C. 60 ∘ .
A. Kết quả khác
Cho S.ABC là hình chóp tam giác đều có các cạnh bên bằng a và có góc giữa các mặt bên và mặt phẳng đáy là α. Hình nón đỉnh S có đường tròn đáy nội tiếp tam giác đều ABC gọi là hình nón nội tiếp hình nón đã cho. Hãy tính diện tích xung quanh của hình nón này theo a và α
Gọi I là trung điểm của cạnh BC và O là tâm của tam giác đều ABC. Theo giả thiết ta có SA = SB = SC = a và ∠ SIO = α. Đặt OI = r, SO = h, ta có AO = 2r và
Do đó a 2 = r 2 tan 2 α + 4 r 2 = r 2 tan 2 α + 4
Vậy
Hình nón nội tiếp có đường sinh là :
Diện tích xung quanh của hình nón nội tiếp hình chóp S.ABC là:
II. Tự luận ( 4 điểm)
Cho hình nón tròn xoay có đỉnh là S, O là tâm của đường tròn đáy, đường sinh bằng a 2 và góc giữa đường sinh và mặt phẳng đáy bằng 60°. Diện tích xung quanh S x q của hình nón và thể tích V của khối nón tương ứng là:
Gọi A là một điểm thuộc đường tròn đáy hình nón.
Theo giải thiết ta có đường sinh S A = a 2 và góc giữa đường sinh và mặt phẳng đáy là S A O ^ = 60 ° .
Trong tam giác vuông SAO, ta có: