Cho tam giác ABC và A(2; 3; -1), B(4; -6; -2) là trọng tâm. Tìm tọa độ của C
A. C(-5; 5; 0)
B. (3; -9; -6)
C. C(-3; 9; 6)
D. C(-3; 9; -6)
bài 2:cho tam giác ABC có A+B-2C=27 độ và A+3C=273 độ.So sánh các cạnh trong tam giác ABC
bài 3:cho tam giác ABC có C-3B-2A=-3 độ và 5B-2A=16 độ. Tính các góc từ đó so sánh các cạnh trong tam giác ABC
cho tam giác ABC có góc A=75 độ 1 đường thẳng đi qua đỉnh A và cắt BC tại M và chia tam giác ABC thành 2 tam giác cân .Tính góc B và C của tam giác ABC
1. Cho tam giác ABC nhọn vẽ về phía ngoài tam giác ABC các tam giác vuông cân BAD và ACE ( tại A ). cm
a, BD^2 + CE^2 = BC^2 + DE^2
b, Đường thẳng đi qua A và vuông góc với DE cắt BC ở K. cm K là trung điểm BC
2. Cho tam giác ABC vuông tại A. Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao điểm BE và CD. cm IA là phân giác góc DIE
Bài 1: Cho tam giác ABC và tam giác NPM có BC = PM; ∠B = ∠P. Cần điều kiện gì để tam gác ABC bằng tam giác NPM theo trường hợp góc – cạnh – góc?
A. ∠M = ∠A B. ∠A = ∠P C. ∠C = ∠M D. ∠A = ∠N
Bài 2: Cho hai tam giác ABC và tam giác MNP có ∠A = ∠M, ∠B = ∠N. Cần điều kiện gì để hai tam giác ABC và tam giác MNP bằng nhau theo trường hợp góc - cạnh – góc?
A. AC = MP B. AB = MN C. BC = NP D. AC = MN
Bài 3: Cho tam giác ABC và tam giác MNP có ∠B = ∠N = 90°; AC = MP, ∠C = ∠M. Phát biểu nào sau đây đúng?
A. ΔABC = ΔPMN
B. ΔACB = ΔPNM
C. ΔBAC = ΔMNP
D. ΔABC = ΔPNM
Bài 1: Cho tam giác ABC cân tại A có các đường trung tuyến BE và CD . Chứng minh rằng BE bằng CD
Bài 2: Cho tam giác ABC có đường trung tuyến BE và CD, biết BE = CD . Chứng minh rằng tam giác ABC cân tại A
Bài 3: Cho tam giác ABC chứng minh rằng a) Nếu tam giác ABC vuông góc tại A , có trung tuyến AM =1/2 BC
b) Nếu trung tuyến AM =1/2 BC thì tam giác ABC vuông góc tại A
1.Cho 2 tam giác bằng nhau ABC và MNP có A^ = 50 độ và B^ = 70 độ.Số đo góc C là bao nhiêu?2.Cho 2 tam giác ABC và MNP có A^ = M^ = 90 độ, B^ = N^. Cần điều kiện gì để 2 tam giác ABC và MNP bằng nhau theo trường hợp cạnh góc vuông - góc nhọn?3.Cho tam giác ABC có góc A là góc tù,B^ > C^.Trong các khẳng định sau khẳng định nào đúng?A.AB > AC > BC
B.AC > AB > BC
C.BC > AB > AC
D>BC > AC > AB4.Cho tam giác MNP có MN = 5 cm , NP = 4 cm , MP = 6cm.Trong các khẳng định sau,khẳng định nào đúng?A. M^ > N^ >P^
B.N^ > P^ > M^
C.M^ > P^ > N^
D.N^ > M^ > P^
Cho tam giác ABC cân tại A.Kẻ AD vuông góc với BC.Chứng minh rằng :a) Tam giác ADB = tam giác ADCb) AD là tia phân giác của góc A
Câu 1: Số đo góc C là 60 độ
Câu 2: Thiếu điều kiện AB=MN
Câu 3: Chọn C
Câu 4: Chọn B
Câu 1: - cho tam giác ABC . Vẽ MN là đường trung bình của tam giác ABC ( M thuộc AB, N thuộc AC) . Chứng minh tam giác ABC đồng dạng với tam giác AMN
câu 2: cho tam giác ABC có góc A > 90 ( AC > AB) trên cạnh BC, AC lấy 2 điểm D và E sao cho CDE = BAC
A. Chứng minh tam giác ABC đồng dạng tam giác DEC
B. Viết tỉ số đồng dạng cũa tam giác ABC và tam giác DEC
C. Chứng minh DC × BC=EC×AC
câu 1 : vì MN là đường TB của tam giác ABC => MN // BC nên theo hệ quả định lí ta-lét , ta có :
\(\frac{AM}{AB}=\frac{AN}{AC}=\frac{MN}{BC}\)
=> tam giác ABC đồng dạng với tam giác AMN theo trường hợp cạnh cạnh cạnh
Cho tam giác nhọn ABC 2 đường cao BD và CE. CMR
a) diện tích tam giác ADE= diện tích tam giác ABC . Cos^2 góc A
b) diện tích tứ giác BCDE = diện tích tam giác ABC . Sin góc A
Gọi AH và AK lần lượt là 2 đường cao của \(\Delta ADE\)và \(\Delta ABC\)
Xét tứ giác BCDE có \(\widehat{BEC}=\widehat{BDC}=90^o\)nên tứ giác BCDE nội tiếp
\(\Rightarrow\widehat{AED}=\widehat{ACB}\)( cùng bù với \(\widehat{BED}\))
\(\Rightarrow\Delta ADE\approx\Delta ABC\left(g.g\right)\) ( nếu chưa học tứ giác nội tiếp thì có thể xét các tam giác đồng dạng để c.m nha )
\(\Rightarrow\frac{AD}{AB}=\frac{DE}{BC}=\frac{AH}{AK}\) ( vì tỉ số đồng dạng bằng tỉ số đường cao )
a) Ta có : \(\frac{S_{ADE}}{S_{ABC}}=\frac{\frac{DE.AH}{2}}{\frac{BC.AK}{2}}=\frac{AD}{AB}.\frac{AH}{AK}=\left(\frac{AD}{AB}\right)^2\)
Mà \(\cos A=\frac{AD}{AB}\Rightarrow\cos^2=\left(\frac{AD}{AB}\right)^2\)\(\Rightarrow\frac{S_{ADE}}{S_{ABC}}=\cos^2A\)
\(\Rightarrow S_{ADE}=S_{ABC}.\cos^2A\)
b) \(S_{BCDE}=S_{ABC}-S_{ADE}=S_{ABC}.\left(1-\cos^2A\right)=S_{ABC}.\sin^2A\)( vì \(\cos^2A+\sin^2A=1\))
1 , Cho tam giác ABC biết A = B = C . Tính các góc của tam giác
2, Cho tam giác ABC có A = 50 độ ; B và C tỉ lệ với 2 và 3 . Tính các góc ngoài tại B và C
a) Cho tam giác ABC, vẽ đường thẳng đi qua A cắt cạnh BC tại K và cắt trung tuyến BM tại I sao cho BI : IM = 1:2 Tính tỉ số diện tích của tam giác ABK và diện tích tam giác ABC
b) Cho tam giác ABC có ba đường cao AD, BE và CF thỏa mãn AD + BC = BE + AC = CF + AB
Chứng minh tam giác ABC là tam giác đều