Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tiến Phạm
Xem chi tiết
Hóp Hiền
Xem chi tiết
khánh kiều
Xem chi tiết
Tt_Cindy_tT
Xem chi tiết
Nguyễn Ngọc Huy Toàn
21 tháng 4 2022 lúc 16:31

C-B-D

I don
21 tháng 4 2022 lúc 16:32

C

B

D

⭐Hannie⭐
21 tháng 4 2022 lúc 16:33

C

B

D

Khánh Linh Bùi
Xem chi tiết
TùGúttBoii
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 2 2021 lúc 20:11

Câu 1: Số đo góc C là 60 độ

Câu 2: Thiếu điều kiện AB=MN

Câu 3: Chọn C

Câu 4: Chọn B 

Ru Nguyễn
Xem chi tiết
vô danh
2 tháng 3 2016 lúc 22:05

câu 1 : vì MN là đường TB của tam giác ABC => MN // BC nên theo hệ quả định lí ta-lét , ta có :


\(\frac{AM}{AB}=\frac{AN}{AC}=\frac{MN}{BC}\)
=> tam giác ABC đồng dạng với tam giác AMN theo trường hợp cạnh cạnh cạnh

phí lan thảo
Xem chi tiết
Thanh Tùng DZ
10 tháng 8 2019 lúc 10:38

A B C D E

Gọi AH và AK lần lượt là 2 đường cao của \(\Delta ADE\)và \(\Delta ABC\)

Xét tứ giác BCDE có \(\widehat{BEC}=\widehat{BDC}=90^o\)nên tứ giác BCDE nội tiếp

\(\Rightarrow\widehat{AED}=\widehat{ACB}\)( cùng bù với \(\widehat{BED}\))                          

\(\Rightarrow\Delta ADE\approx\Delta ABC\left(g.g\right)\)    ( nếu chưa học tứ giác nội tiếp thì có thể xét các tam giác đồng dạng để c.m nha )

\(\Rightarrow\frac{AD}{AB}=\frac{DE}{BC}=\frac{AH}{AK}\)   ( vì tỉ số đồng dạng bằng tỉ số đường cao )

a) Ta có : \(\frac{S_{ADE}}{S_{ABC}}=\frac{\frac{DE.AH}{2}}{\frac{BC.AK}{2}}=\frac{AD}{AB}.\frac{AH}{AK}=\left(\frac{AD}{AB}\right)^2\)

Mà \(\cos A=\frac{AD}{AB}\Rightarrow\cos^2=\left(\frac{AD}{AB}\right)^2\)\(\Rightarrow\frac{S_{ADE}}{S_{ABC}}=\cos^2A\)

\(\Rightarrow S_{ADE}=S_{ABC}.\cos^2A\)

b) \(S_{BCDE}=S_{ABC}-S_{ADE}=S_{ABC}.\left(1-\cos^2A\right)=S_{ABC}.\sin^2A\)( vì \(\cos^2A+\sin^2A=1\))

Cô Bé Song Ngư
Xem chi tiết
lê song trí
Xem chi tiết