Xếp ngẫu nhiên 10 học sinh gồm 5 nam và 5 nữ thành một hàng dọc. Xác suất để không có bất kì hai học sinh cùng giới nào đứng cạnh nhau bằng
A. 1 252 .
B. 1 42 .
C. 1 126 .
D. 1 21 .
Xếp ngẫu nhiên 10 học sinh gồm 5 nam và 5 nữ thành một hàng dọc. Xác suất để không có bất kì hai học sinh cùng giới nào đứng cạnh nhau bằng
A. 1 252 .
B. 1 42
C. 1 126 .
D. 1 21 .
Xếp ngẫu nhiên 10 học sinh gồm 5 nam và 5 nữ thành một hàng dọc. Xác suất để không có bất kì hai học sinh cùng giới nào đứng cạnh nhau bằng
A. 1 252
B. 1 42
C. 1 126
D. 1 21
Đáp án C
Số cách xếp ngẫu nhiên là 10!.
Ta tìm số cách xếp thoả mãn:
Đánh số hàng từ 1 đến 10. Có hai khả năng:
5 nam xếp vị trí lẻ và 5 nữ xếp vị trí chẵn có 5!x5!= 120 2
5 nam xếp vị trí chẵn và 5 nữ xếp vị trí lẻ có 5!x5!= 120 2
Theo quy tắc cộng có 120 2 + 120 2 =2x 120 2 cách xếp thoả mãn.
Vậy xác suất cần tính 2 ( 5 ! ) 2 10 ! = 1 126
Xếp ngẫu nhiên 10 học sinh gồm 5 học sinh nam và 5 học sinh nữ thành một hàng ngang. Xác suất để trong 10 học sinh trên không có hai học sinh cùng giới tính đứng cạnh nhau, đồng thời Hoàng và Lan không đứng cạnh nhau bằng
A. 1/450
B. 8/1575
C. 1/175
D. 4/1575
Số phần tử của không gian mẫu n(Ω)=10!
Xếp 10 học sinh trên một hàng ngang sao cho 5 học sinh nam xen kẽ 5 học sinh nữ có 2 cách xếp.
Xét trong 2 cách xếp trên các khả năng Hoàng và Lan đứng liền kề nhau:
Xếp 8 học sinh trên một hàng ngang sao cho 4 học sinh nam xen kẽ 4 học sinh nữ có 2 cách xếp.
Với mỗi cách xếp 8 học sinh trên có 9 khoảng trống tạo ra. Với mỗi khoảng trống trên, xếp Hoàng và Lan vào khoảng trống này để được 5 học sinh nam xen kẽ 5 học sinh nữ có 1 cách xếp.
Suy số cách xếp 5 học sinh nam xen kẽ 5 học sinh nữ mà Hoàng và Lan đứng kề nhau là: 2.9
Vậy số phần tử của A là: n =2–2.9=18432.
Xác suất cần tìm là P(A)=n(A)/n(Ω)=18432/10!=8/1575.
+ Phương án B. Tính sai: P(A)=(2.5!5!-2.4!4!7)/10!=1/175.
+ Phương án C. Tính sai: P(A)=(5!5!-4!4!9)/10!=4/1575.
+ Phương án D. Tính sai: P(A)=(2.5!5!- 2.4!4!18)/10!=1/450.
Đáp án B
Xếp ngẫu nhiên 10 học sinh gồm 5 học sinh nam và 5 học sinh nữ thành một hàng ngang. Xác suất để trong 10 học sinh trên không có hai học sinh cùng giới tính đứng cạnh nhau, đồng thời Hoàng và Lan không đứng cạnh nhau bằng
A. 1 450 .
B. 8 1575 .
C. 1 175 .
D. 4 1575 .
Đáp án B
– Số phần tử của không gian mẫu n Ω =10!
* Xếp 10 học sinh trên một hàng ngang sao cho 5 học sinh nam xen kẽ 5 học sinh nữ có 2 cách xếp.
* Xét trong 2 cách xếp trên các khả năng Hoàng và Lan đứng liền kề nhau:
+ Xếp 8 học sinh trên một hàng ngang sao cho 4 học sinh nam xen kẽ 4 học sinh nữ có 2 cách xếp.
+ Với mỗi cách xếp 8 học sinh trên có 9 khoảng trống tạo ra. Với mỗi khoảng trống trên, xếp Hoàng và Lan vào khoảng trống này để được 5 học sinh nam xen kẽ 5 học sinh nữ có 1 cách xếp.
xxxx
Suy số cách xếp 5 học sinh nam xen kẽ 5 học sinh nữ mà Hoàng và Lan đứng kề nhau là: 2.9
Vậy số phần tử của A là: n =2-2.9=18432.
Xếp ngẫu nhiên tám học sinh gồm bốn học sinh nam (trong đó có Hoàng và Nam) cùng bốn học sinh nữ (trong đó có Lan) thành một hàng ngang. Xác suất để trong tám học sinh trên không có hai học sinh cùng giới đứng cạnh nhau, đồng thời Lan đứng cạnh Hoàng và Nam là
A . 1 560
B . 1 1120
C . 1 35
D . 1 280
Chọn D
Xếp ngẫu nhiên tám học sinh thành hàng ngang, có 8! cách. Suy ra n ( Ω ) = 8! = 40320
Gọi A là biến cố cần tính xác suất.
Ta coi Hoàng, Lan, Nam ( Lan ở giữa) là một nhóm. Khi đó vì hai bên nhóm này bắt buộc là nữ nên coi nhóm này là một nam. Vậy có thể coi ta có ba nam và ba nữ.
Khi đó có hai trường hợp xảy ra.
Trường hợp 1: Nam ngồi vị trí lẻ.
Xếp ba nam vào vị trí lẻ có 3! cách.
Xếp ba nữ vào vị trí chẵn có 3! cách.
Hoán vị hai học sinh nam trong nhóm ( Hoàng- Lan- Nam) có 2! cách.
Vậy số cách sắp xếp trong trường hợp này là 3!.3!.2! = 72 cách.
Trường hợp 2: Nam ngồi vị trí chẵn.
Tương tự trường hợp này có 3!.3!.2! = 72 cách.
Suy ra n(A) = 72 + 72 = 144 cách.
Vậy
Xếp ngẫu nhiên tám học sinh gồm bốn học sinh nam (trong đó có Hoàng và Nam) cùng bốn học sinh nữ (trong đó có Lan) thành một hàng ngang. Xác suất để trong tám học sinh trên không có hai học sinh cùng giới đúng cạnh nhau, đồng thời Lan đứng cạnh Hoàng và Nam là
A. 1 560
B. 1 1120
C. 1 35
D. 1 280
Xếp ngẫu nhiên tám học sinh gồm bốn học sinh nam (trong đó có Hoàng và Nam) cùng bốn học sinh nữ (trong đó có Lan) thành một hàng ngang. Xác suất để trong tám học sinh trên không có hai học sinh cùng giới đúng cạnh nhau, đồng thời Lan đứng cạnh Hoàng và Nam là
A. 1 560
B. 1 1120
C. 1 35
D. 1 280
Chọn D
Xếp ngẫu nhiên 8 học sinh có 8! cách.
"Buộc" Hoàng, Lan, Nam thành một nhóm. Khi đó vì hai bên nhóm này bắt buộc là nữ nên ta xem nhóm ba người này là một nam. Vậy có ba nam và ba nữ.
Trường hợp 1: nam ngồi vị trí lẻ.
Xếp 3 nam vào 3 vị trí lẻ: 3!
Xếp 3 nữ vào 3 vị trí chẵn: 3!
Hoán vị hai học sinh nam trong nhóm: 2!
Suy ra số cách xếp trong trường hợp này là: 3!.3!.2!=72 cách
Trường hợp 2: nam ngồi vị trí chẵn
Tương tự có 72 cách
Vậy có 72 + 72 = 144 cách xếp tám học sinh không có hai học sinh cùng giới đứng cạnh nhau, đồng thời Lan đứng cạnh Hoàng và Nam.
Suy ra xác suất cần tìm là P = 144 8 ! = 1 280 .
một tổ học sinh gồm 5 nữ 8 nam xếp thành 1 hàng dọc tính xác suất để không có hai em học sinh nữ nào đứng cạnh nhau?
lại lần nữa:
Để mình làm lại :
Số cách xếp bất kỳ 13 học sinh là: \(\left|\Omega\right|=P_{13}\)
Số cách xếp có ít nhất 2 học sinh nữ cạnh nhau là: \(2.P_{12}\)
Số cách xếp không có 2 học sinh nữ cạnh nhau là:
\(P_{13}-2P_{12}=11P_{12}\)
Goi A là biến cố không có 2 học sinh nữ cạnh nhau
\(\Rightarrow\left|A\right|=11.P_{12}\)
\(\Rightarrow P\left(A\right)=\)\(\frac{\left|A\right|}{\left|\Omega\right|}\)\(=\frac{11}{13}\)
Một tổ có 5 học sinh nữ và 6 học sinh nam. Xếp ngẫu nhiên các học sinh trên thành hàng ngang để chụp ảnh. Tính xác suất để không có hai học sinh nữ nào đứng cạnh nhau.
A . 65 66
B . 1 66
C . 7 9
D . 1 22
Chọn C
Số phần tử của không gian mẫu là
Gọi A là biến cố "không có hai học sinh nữ nào đứng cạnh nhau".
Mỗi phần tử của A tương ứng với 1 hàng ngang gồm 11 bạn đã cho mà không có hai nữ xếp cạnh nhau. Để xếp được 1 hàng như vậy ta thực hiện liên tiếp hai bước:
Bước 1: Xếp 6 bạn nam thành một hàng ngang, có 6!= 720 cách
Bước 2: Xếp 5 bạn nữ vào 7 vị trí xen giữa hai nam hoặc ngoài cùng (để 2 nữ không cạnh nhau), có A 7 5 = 2520 cách.
Vậy n(A) =720.2520 = 1814400
Xác suất cần tìm là