Cho các góc α , β và có số phức z = cos α + i.sin β . Khi đó x = z.w thì:
A . x = cos ( α - β ) + i . sin ( α + β )
B . x = cos ( α + β ) + i . sin ( α + β )
C . x = cos ( α β ) + i . sin ( α β )
D . x = sin ( α - β ) + i . cos ( α + β )
Cho các góc α, β nhọn và α < β.
CMR : cos(β – α) = cos β. cos α + sin β.sin α .
Cho △ ABC vuông tại A, có AB < AC và trung tuyến AM, góc ACB = α, góc AMB = β. Chứng minh rằng (sin α + cos a)2 = 1 + sin β
Phương trình sin2x=-1/2 có hai họ nghiệm có dạng x=α+kη và x=β+kη, k thuộc z,(-η/4<α<0<β<3η/4).Khi đó tính β2+α2
\(sin2x=-\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}2x=-\dfrac{\pi}{6}+k2\pi\\2x=\dfrac{7\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{12}+k\pi\\x=\dfrac{7\pi}{12}+k\pi\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\alpha=-\dfrac{\pi}{12}\\\beta=\dfrac{7\pi}{12}\end{matrix}\right.\) \(\Rightarrow\alpha^2+\beta^2=\dfrac{25\pi^2}{72}\)
Tìm đẳng thức đúng:
A. cos α = cos β B. cos α = tg β
C. cos α = cotg β D. cos α = sin β
Cho biết 0≤α≤π20≤α≤π2 sao cho
sin3(α)+cos3(α)=1sin3(α)+cos3(α)=1
Và β=sin(α)+cos(α)β=sin(α)+cos(α)
a) Tính ∑α=07π2(sin−1(β)+α)∑α=07π2(sin−1(β)+α)
b) Chứng minh rằng số ββ thỏa đề bài là nghiệm của phương trình: β3−6β+5=0
Trong không gian với hệ trục tọa độ Oxyz, gọi (α) là mặt phẳng chứa đường thẳng ∆ : x - 2 1 = y - 1 1 = z - 2 và vuông góc với mặt phẳng (β):x+y+2z+1=0. Khi đó giao tuyến của hai mặt phẳng (α), (β) có phương trình
A. x - 1 = y + 1 1 = z - 1
B. x 1 = y + 1 1 = z - 1 1
C. x - 2 1 = y + 1 - 5 = z 2
D. x + 2 1 = y - 1 - 5 = z 2
Cho các góc α, β nhọn. Chứng minh rằng cos(α + β ) = cosαcosβ - sinαsinβ .
Cho α , β thỏa mãn sin α + sin β = 2 2 ; cos α + cos β = 6 2 . Tính cos α - β .
A. cos α - β = 0
B. cos α - β = 2 2
C. cos α - β = 3 2
D. cos α - β = 1 2
Cho hai số phức α = a + bi, β = c + di. Hãy tìm điều kiện của a, b, c, d để các điểm biểu diễn α và β trên mặt phẳng tọa độ: Đối xứng với nhau qua đường phân giác của góc phần tư thứ nhất và góc phần tư thứ ba