Tính giá trị lớn nhất hoặc nhỏ nhất của các biểu thức sau: B = 9 x - 3 x 2
tìm giá trị lớn nhất nhất hoặc nhỏ nhất của các biểu thức sau; a) (x-1/2)2+3/4 b) B=4/(x-2/3)2+9
a) A=(x-1/2)^2+3/4
Vì (x-1/2)^2>=0 với mọi x
=>(x-1/2)^2+3/4>=3/4 với mọi x.
Dấu "=" xảy ra <=>x-1/2=0<=>x=1/2
Vậy Amin=3/4<=>x=1/2
Ta có : (x - \(\frac{1}{2}\))2 \(\ge0\forall x\)
=> (x - \(\frac{1}{2}\))2 + \(\frac{3}{4}\)\(\ge\frac{3}{4}\forall x\)
Vậy GTNN của (x - \(\frac{1}{2}\))2 + \(\frac{3}{4}\)là \(\frac{3}{4}\) khi x =\(\frac{1}{2}\)
Câu b) đâu các bạn? Mình cần các bạn giúp mình!!! Nhanh lên nhé!
tìm giá trị lớn nhất, giá trị nhỏ nhất của các biểu thức sau trong các điều kiện đã chỉ ra
A = √x - 2/x - 3√x + 11 với x lớn hơn hoặc bằng 0
Đề đọc khó hiểu. Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
Tìm giá trị nhỏ nhất hoặc lớn nhất của các biểu thức sau?
A=|x+1|+5
B=x*2+15/x*2+3
A= |x+1|+5
Vì |x+1| > hoặc =0 => |x+1|+5 > hoặc =5
Dấu = xảy ra <=> x+1=0=> x=-1
Vậy A đạt GTNN =5 <=> x=-1
Còn câu b bạn tự làm
ủng hộ nha
Tìm giá trị lớn nhất hoặc Nhỏ nhất của các biểu thức sau C =5-6x-x^2
D=3x(x+4)-9
Tìm giá trị nhỏ nhất hoặc lớn nhất của các biểu thức sau:
A=|x+1| + 5
B=(x^2+15)/(x^2+3)
|x+1|> hoặc = 0 với mọi x
suy ra |x+1|+5 > hoặc = 5 với mọi x
suy ra Amin=5 khi |x+1|=0
suy ra x+1=0
suy ra x = -1
vậy gtnn của A là 5 khi x=-1
bn nên sử dụng dấu suy ra và dấu lớn hơn hoặc vì mình ko biết đánh dấu . câu b bn làm tương tự vì x^2 cũng lớn hơn hoặc bằng 0
Tìm giá trị lớn nhất hoặc giá trị nhỏ nhất của biểu thức sau
a,(2x-3)^4-2
b,(x^2-9)^2+/y-3/-1
c,-/x+5/+2
d,2-x^2
Tính giá trị lớn nhất hoặc nhỏ nhất của biểu thức sau:
B = 5 - 8x - x2
\(B=5-8x-x^2=-\left(x^2+8x+16\right)+21=-\left(x+4\right)^2+16\le16\forall x\)
Vậy GTLN của B = 16 khi x = -4.
\(5-8x-x^2\)
\(=-\left(x^2+8x-5\right)\)
\(=-\left(x^2+2.x.4+16-21\right)\)
\(=-\left(\left(x+4\right)^2-21\right)\)
\(=21-\left(x+4\right)^2\ge21\)
Min B = 21 khi \(x+4=0\)
\(=>x=-4\)
Đinh Thùy Linh
sai òi mà còn bìa đặc làm kiểu
Tính giá trị lớn nhất hoặc nhỏ nhất của các biểu thức sau:
a) A=2x^2-8x-10
b) B=9x-3x^2
c) C=x^4-2x^3-2x^2-2x-3
b) B=-3(x^2-3x+9/4)+27/4=-3(x-3/2)^2+27/4 <=27/4. Vậy MaxB=27/4, dấu "=" xảy ra <=> x-3/2=0 <=> x=3/2
a, Ta có : \(A=2x^2-8x-10=2\left(x^2-4x-5\right)\)
\(=2\left(x^2-4x+4-9\right)=3\left(x-2\right)^2-18\ge-18\)
Dấu ''='' xảy ra <=> x = 2
Vậy GTNN A là -18 <=> x = 2
b, Ta có : \(B=-3x^2+9x=-3\left(x^2-3x+\frac{9}{4}-\frac{9}{4}\right)\)
\(=-3\left(x-\frac{3}{2}\right)^2+\frac{18}{4}\ge\frac{18}{4}\)
Dấu ''='' xảy ra <=> x = 3/2
Vậy GTNN B là 18/4 <=> x = 3/2
với GTLN thì ngược dấu lại làm tương tự như trên.
Tìm giá trị nhỏ nhất hoặc lớn nhất của các biểu thức sau :
a) \(A=\left|x-2017\right|+\left|x-2018\right|\)
b) \(B=\dfrac{x^2+12}{x^2+4}\)
a, \(A=\left|x-2017\right|+\left|2018-x\right|\ge\left|x-2017+2018-x\right|=1\)
Vậy \(Min=1\Leftrightarrow2017\le x\le2018\)
b, \(B=\dfrac{x^2+4+8}{x^2+4}=1+\dfrac{8}{x^2+4}\)
Thấy : \(x^2+4\ge4\)
\(\Rightarrow B=1+\dfrac{8}{x^2+4}\le3\)
Vậy \(Max=3\Leftrightarrow x=0\)
a)Tìm giá trị nhỏ nhất của các biểu thức sau:
A = 25x2 - 10x + 11
B = (x - 3)2 + (11 - x)2
C = (x + 1)(x - 2)(x - 3)(x - 6)
b) Tìm giá trị lớn nhất của các các biểu thức sau:
D = 10x - 25x2 - 11
E = 19 - 6x - 9 x2
F = 2x - x2
c) Cho x và y thỏa mãn: x2 + 2xy + 6x + 2y2 + 8 = 0
Tìm giá trị lớn nhất và nhỏ nhất của biểu thức B = x + y + 2024
\(a,\\ A=25x^2-10x+11\\ =\left(5x\right)^2-2.5x.1+1^2+10\\ =\left(5x+1\right)^2+10\ge10\forall x\in R\\ Vậy:min_A=10.khi.5x+1=0\Leftrightarrow x=-\dfrac{1}{5}\\ B=\left(x-3\right)^2+\left(11-x\right)^2\\ =\left(x^2-6x+9\right)+\left(121-22x+x^2\right)\\ =x^2+x^2-6x-22x+9+121=2x^2-28x+130\\ =2\left(x^2-14x+49\right)+32\\ =2\left(x-7\right)^2+32\\ Vì:2\left(x-7\right)^2\ge0\forall x\in R\\ Nên:2\left(x-7\right)^2+32\ge32\forall x\in R\\ Vậy:min_B=32.khi.\left(x-7\right)=0\Leftrightarrow x=7\\Tương.tự.cho.biểu.thức.C\)
b:
\(D=-25x^2+10x-1-10\)
\(=-\left(25x^2-10x+1\right)-10\)
\(=-\left(5x-1\right)^2-10< =-10\)
Dấu = xảy ra khi x=1/5
\(E=-9x^2-6x-1+20\)
\(=-\left(9x^2+6x+1\right)+20\)
\(=-\left(3x+1\right)^2+20< =20\)
Dấu = xảy ra khi x=-1/3
\(F=-x^2+2x-1+1\)
\(=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1< =1\)
Dấu = xảy ra khi x=1