Cho biểu thức:
P(n) = an+bn+c ( trong đó a; b; c là các số nguyên)
Chứng minh rằng: Với mọi số nguyên dương n bất kì mà P(n) luôn chia hết cho m ( với m là số cho trước) thì b2 chia hết cho n
Câu 1:cho biểu thức:P=(căn x-2/x-1-căn x +2/x+2 căn x+1).(1-x^2)/2 a)rút gọn P b)tính giá trị của P khi x=7-4 căn3 c)tìm x để P có GTLN Câu2:Cho(O),điểm A nằm ngoài đường tròn,kẻ tiếp tuyến AM,AN(M,N là các tiếp điểm) a)cm OA vuông góc với MN b)vẽ đường kính NOC.cm CM song song vs AO c)tính các cạnh của tam giác AMN biết OM=3cm,OA=5cm (mọi ng giúp e vs ạ)
Câu 2:
a: Xét (O) có
AM,AN là các tiếp tuyến
Do đó: AM=AN
=>A nằm trên đường trung trực của MN(1)
Ta có: OM=ON
=>O nằm trên đường trung trực của MN(2)
Từ (1) và (2) suy ra OA là đường trung trực của MN
=>OA\(\perp\)MN tại H và H là trung điểm của MN
b: Xét (O) có
ΔCMN nội tiếp
CN là đường kính
Do đó: ΔCMN vuông tại M
=>CM\(\perp\)MN
Ta có: CM\(\perp\)MN
MN\(\perp\)OA
Do đó: CM//OA
c: Ta có: ΔOMA vuông tại M
=>\(MO^2+MA^2=OA^2\)
=>\(MA^2+3^2=5^2\)
=>\(MA^2=25-9=16\)
=>\(MA=\sqrt{16}=4\left(cm\right)\)
=>AN=4(cm)
Xét ΔMOA vuông tại M có MH là đường cao
nên \(MH\cdot OA=MO\cdot MA\)
=>\(MH\cdot5=3\cdot4=12\)
=>MH=12/5=2,4(cm)
Ta có: H là trung điểm của MN
=>MN=2*MH=4,8(cm)
Chu vi tam giác AMN là:
4+4+4,8=12,8(cm)
cho a,b và c thỏa mãn 2a+b+c=-1
hãy tính giá trị biểu thức:P=4a2+b2+c2+4ab+4ac+2ab
Lời giải:
$P=4a^2+b^2+c^2+4ab+4ac+2bc=(2a+b+c)^2=(-1)^2=1$
Với giá trị nào của x thì biểu thức:P=\(-x^2-8x+5\)có giá trị lớn nhất.Tìm giá trị lớn nhất đó?
Các bn giúp mk nha!
ai lm đúng mk tick cho
(giải chi tiết)
thanks!
Với giá trị nào của x thì biểu thức:P=\(-x^2-8x+5\).Có giá trị lớn nhất.Tìm giá trị lớn nhất đó?
các bn giúp mk nhé!
ai lm đúng mk tick cho!^-^
(lm chi tiết)
thanks.
Với giá trị nào của x thì biểu thức:P=\(-x^2-8x+5\)có giá trị lớn nhất.Tìm giá trị lớn nhất đó?
Các bn giúp mk nha!
ai lm đúng mk tick cho
(giải chi tiết)
thanks!
\(P=-x^2-8x+5\)
\(=-x^2-8x-16+21\)
\(=-\left(x^2+8x+16\right)+21\)
\(=21-\left(x+4\right)^2\)
\(\left(x+4\right)^2\ge0\)
\(-\left(x+4\right)^2\le0\)
\(21-\left(x+4\right)^2\le21\)
\(P_{max}=21\Leftrightarrow x=-4\)
Cho ba số thực a,b,c thỏa mãn a\(\ge1;b\ge4;c\ge9\)
Tìm giá trị lớn nhất của biểu thức:P=\(\frac{bc\sqrt{a-1}+ca\sqrt{b-4}+ab\sqrt{c-9}}{abc}\)
\(P=\frac{\sqrt{a-1}}{a}+\frac{\sqrt{b-4}}{b}+\frac{\sqrt{c-9}}{c}=\frac{\sqrt{\left(a-1\right)\cdot1}}{a}+\frac{1}{2}\cdot\frac{\sqrt{\left(b-4\right)\cdot4}}{b}+\frac{1}{3}\cdot\frac{\sqrt{\left(c-9\right)\cdot9}}{c}\)
\(\Rightarrow P\le\frac{\frac{a-1+1}{2}}{a}+\frac{1}{2}\cdot\frac{\frac{b-4+4}{2}}{b}+\frac{1}{3}\cdot\frac{\frac{c-9+9}{2}}{c}\)
\(\Rightarrow P\le\frac{a}{2a}+\frac{b}{4b}+\frac{c}{6c}=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}=\frac{11}{12}\)
Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=8\\c=18\end{matrix}\right.\)
Cho a+b+c=0 và abc khác 0,tính giá trị của biểu thức:
P= \(\dfrac{1}{b^2+c^2-a^2}+\dfrac{1}{a^2+c^2-b^2}+\dfrac{1}{a^2+b^2-c^2}\)
P= \(\dfrac{1}{b^2+c^2-a^2}+\dfrac{1}{a^2+c^2-b^2}+\dfrac{1}{a^2+b^2-c^2}\)
=
\(\dfrac{a+b+c}{\left(b^2+c^2-a^2\right)\left(a+b+c\right)}+\dfrac{a+b+c}{\left(a^2+c^2-b^2\right)\left(a+b+c\right)}+\dfrac{a+b+c}{\left(a^2+b^2-c^2\right)\left(a+b+c\right)}\)
= 0+0+0 = 0
Vậy P= 0
Ngu vãi ko bt đúng không nx
\(P=\dfrac{1}{b^2+c^2-a^2}+\dfrac{1}{a^2+c^2-b^2}+\dfrac{1}{a^2+b^2-c^2}\)
\(=\dfrac{1}{b^2+c^2-\left(-b-c\right)^2}+\dfrac{1}{a^2+c^2-\left(-c-a\right)^2}+\dfrac{1}{a^2+b^2-\left(-a-b\right)^2}\)
\(=\dfrac{1}{b^2+c^2-\left(b+c\right)^2}+\dfrac{1}{a^2+c^2-\left(c+a\right)^2}+\dfrac{1}{a^2+b^2-\left(a+b\right)^2}\)
\(=\dfrac{1}{b^2+c^2-b^2-2bc-c^2}+\dfrac{1}{a^2+c^2-a^2-2ac-c^2}+\dfrac{1}{a^2+b^2-a^2-2ab-b^2}\)
\(=\dfrac{1}{-2bc}+\dfrac{1}{-2ac}+\dfrac{1}{-2ab}\)
\(=\dfrac{a}{-2bca}+\dfrac{b}{-2acb}+\dfrac{c}{-2abc}\)
\(=\dfrac{a+b+c}{-2abc}=\dfrac{0}{-2abc}=0\)
cho ba số thực dương a,b,c thỏa mãn a+b+c=3. Tìm GTNN của biểu thức:
P=\(\dfrac{b\sqrt{b}}{\sqrt{2a+b+c}}+\dfrac{c\sqrt{c}}{\sqrt{2b+c+a}}+\dfrac{c\sqrt{c}}{\sqrt{2c+a+b}}\)
Với giá trị nào của x thì biểu thức:P=\(-x^2-8x+5.\)Có giá trị lớn nhất.Tìm giá trị lớn nhất đó?
Các bn ơi giúp mk nhé!
ai lm đúng mk tick cho^_^
(lm chi tiết)
thanks!
Cho biểu thức:P=2015+540:[x-6],(với x là số tự nhiên). Tìm x sao cho P có giá trị lớn nhất. Tìm giá trị lớn nhất đó!
Để P lớn nhất thì 540:[x-6] lớn nhất
Do đó [x-6] là số tự nhiên nhỏ nhất (số chia càng nhỏ thì thương càng lớn)
Mà trong 1 phép chia số chia luôn khác 0. Vậy x-6 = 1
x=1+6=7
Giá trị lớn nhất của P chính là 2015 + 540 : 1 = 2015 + 540 = 2555
Bài này mới chuẩn nè :
P có GTLN <=> 540 : (x - 6) có GTNN
<=> x - 6 có GTNN. Mà x - 6 ≠ 0 => x - 6 = 1
<=> x = 7. Khi đó P = 2015 + 540 : 1 = 2555 có GTLN tại x = 7