Có f x = log 2 - 1 x 2 - x . Giải bất phương trình f(x) > 0
A. x > 1 2
B. x>1
C. x < 1 2
D. x<0
Đề bài
Giải mỗi phương trình sau:
a) \({\left( {0,3} \right)^{x - 3}} = 1\)
b) \({5^{3x - 2}} = 25\)
c) \({9^{x - 2}} = {243^{x + 1}}\)
d) \({\log _{\frac{1}{x}}}(x + 1) = - 3\)
e) \({\log _5}(3x - 5) = {\log _5}(2x + 1)\)
f) \({\log _{\frac{1}{7}}}(x + 9) = {\log _{\frac{1}{7}}}(2x - 1)\)
\(a,\left(0,3\right)^{x-3}=1\\ \Leftrightarrow x-3=0\\ \Leftrightarrow x=3\\ b,5^{3x-2}=25\\ \Leftrightarrow3x-2=2\\ \Leftrightarrow3x=4\\ \Leftrightarrow x=\dfrac{4}{3}\\ c,9^{x-2}=243^{x+1}\\ \Leftrightarrow3^{2x-4}=3^{5x+5}\\ \Leftrightarrow2x-4=5x+5\\ \Leftrightarrow3x=-9\\ \Leftrightarrow x=-3\)
d, Điều kiện: \(x>-1;x\ne0\)
\(log_{\dfrac{1}{x}}\left(x+1\right)=-3\\ \Leftrightarrow x+1=x^3\\ x\simeq1,325\left(tm\right)\)
e, Điều kiện: \(x>\dfrac{5}{3}\)
\(log_5\left(3x-5\right)=log_5\left(2x+1\right)\\ \Leftrightarrow3x-5=2x+1\\ \Leftrightarrow x=6\left(tm\right)\)
f, Điều kiện: \(x>\dfrac{1}{2}\)
\(log_{\dfrac{1}{7}}\left(x+9\right)=log_{\dfrac{1}{7}}\left(2x-1\right)\\ \Leftrightarrow x+9=2x-1\\ \Leftrightarrow x=10\left(tm\right)\)
Cho f x = a ln x + x 2 + 1 + b sin x + 6 với a , b ∈ ℝ . Biết rằng f(log(log e)) = 2. Tính giá trị của f(log(ln10)).
A. 10
B. 2
C. 4
D. 8
Tập xác định của hàm số f ( x ) = log - x 2 - 2 x + 8 | x + 1 | có chứa bao nhiêu số nguyên?
A. 4
B. 7
C. 3
D. 5
Chọn A
Điều kiện:
Vậy tập xác định của hàm số f(x) là suy ra tập xác định của hàm số chứa 4 số nguyên là -3; -2; 0; 1
Tính đạo hàm của hàm số \(f\left( x \right)= \log x\) tại điểm \({x_0} = \frac{1}{2}\)
\(f'\left(x\right)=\dfrac{1}{x\cdot ln10}\)
=>\(f'\left(\dfrac{1}{2}\right)=\dfrac{1}{\dfrac{1}{2}\cdot ln10}=\dfrac{2}{ln10}\)
Tập xác định của hàm số f ( x ) = log - x 2 - 2 x + 8 x + 1 có chứa bao nhiêu số nguyên?
A. 4
B. 7
C. 3
D. 5
Câu 1: Gọi \(F\left(x\right)\) là một nguyên hàm của \(f\left(x\right)\) . Cho \(f’\left(x\right)=2x\ln\left(x\right)+2x\) và \(f\left(1\right)=\frac{1}{2}\), \(F\left(1\right)=\frac{1}{18}\) . Hỏi phương trình \(\frac{f\left(x\right).F\left(x\right)}{F\left(f\left(x\right)\right)+f\left(F\left(x\right)\right)}=0\) có bao nhiêu nghiệm dương.
Câu 2: Cho \(\int\limits^4_1f\left(x\right)dx=\frac{14\sqrt{2}}{3}\) và \(\int\limits^4_1f’\left(x\right)dx=\sqrt{2}\), \(f\left(0\right)=0\). Tính \(f\left(1\right)+f\left(2\right)\) bằng
Câu 3: Cho \(\int\limits^2_1f\left(x\right)\log\left(x\right)dx=\log\left(4\right)-\frac{3}{4\ln\left(10\right)}\), \(\int\limits^2_1f’\left(x\right)\log\left(x\right)dx=\log\left(4\right)-\frac{1}{\ln10}\) . Khi này phương trình \(f\left(x\right)^2+f\left(x\right)-2=0\) có bao nhiêu nghiệm nguyên.
Tìm các giá trị của \(x\) để biểu thức sau có nghĩa:
a) \({\log _3}\left( {1 - 2{\rm{x}}} \right)\);
b) \({\log _{x + 1}}5\).
a)
Điều kiện để $1-2x > 0$ (đối số dương) là:
$1 > 2x$
$x < \frac{1}{2}$
Vậy, để biểu thức $log_3(1-2x)$ có nghĩa, giá trị của $x$ phải nhỏ hơn $\frac{1}{2}$.
b)
Điều kiện để $x+1 \neq 0$ và $x+1 \neq 1$ là:
$x \neq -1$ và $x \neq 0$
Vậy, để biểu thức $log_{x+1}5$ có nghĩa, giá trị của $x$ không được bằng -1 hoặc 0.
Giải các phương trình sau:
a) \({\left( {\frac{1}{4}} \right)^{x - 2}} = \sqrt 8 \);
b) \({9^{2x - 1}} = {81.27^x}\);
c) \(2{\log _5}\left( {x - 2} \right) = {\log _5}9\);
d) \({\log _2}\left( {3{\rm{x}} + 1} \right) = 2 - {\log _2}\left( {x - 1} \right)\).
\(a,\left(\dfrac{1}{4}\right)^{x-2}=\sqrt{8}\\ \Leftrightarrow\left(\dfrac{1}{2}\right)^{2x-4}=\left(\dfrac{1}{2}\right)^{-\dfrac{3}{2}}\\ \Leftrightarrow2x-4=-\dfrac{3}{2}\\ \Leftrightarrow2x=\dfrac{5}{2}\\ \Leftrightarrow x=\dfrac{5}{4}\)
\(b,9^{2x-1}=81\cdot27^x\\ \Leftrightarrow3^{4x-2}=3^{4+3x}\\ \Leftrightarrow4x-2=4+3x\\ \Leftrightarrow x=6\)
c, ĐK: \(x-2>0\Rightarrow x>2\)
\(2log_5\left(x-2\right)=log_59\\
\Leftrightarrow log_5\left(x-2\right)^2=log_59\\
\Leftrightarrow\left(x-2\right)^2=3^2\\
\Leftrightarrow\left[{}\begin{matrix}x-2=3\\x-2=-3\end{matrix}\right.\\
\Leftrightarrow\left[{}\begin{matrix}x=5\left(tm\right)\\x=-1\left(ktm\right)\end{matrix}\right.\)
Vậy phương trình có nghiệm là x = 5.
d, ĐK: \(x-1>0\Leftrightarrow x>1\)
\(log_2\left(3x+1\right)=2-log_2\left(x-1\right)\\ \Leftrightarrow log_2\left(3x+1\right)\left(x-1\right)=2\\ \Leftrightarrow3x^2-2x-1=4\\ \Leftrightarrow3x^2-2x-5=0\\ \Leftrightarrow\left(3x-5\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\left(tm\right)\\x=-1\left(ktm\right)\end{matrix}\right.\)
Vậy phương trình có nghiệm \(x=\dfrac{5}{3}\)
Giải phương trình:
a, logx216 + log2x64=3
b, log2(4x+1+4).log2(4x+1)=log1/√2√1/8
c, 5lnx=50-xlg5
d, 2log5(x+3)=x
e, x+log(x2-x-6)=4+lg(x+2)
Giải các phương trình sau:
a) \({\log _{\frac{1}{2}}}\left( {x - 2} \right) = - 2\);
b) \({\log _2}\left( {x + 6} \right) = {\log _2}\left( {x + 1} \right) + 1\)
a) \({\log _{\frac{1}{2}}}\left( {x - 2} \right) = - 2\)
Điều kiện: \(x - 2 > 0 \Leftrightarrow x > 2\)
Vậy phương trình có nghiệm là \(x = 6\).
b) \({\log _2}\left( {x + 6} \right) = {\log _2}\left( {x + 1} \right) + 1\)
Điều kiện: \(\left\{ \begin{array}{l}x + 6 > 0\\x + 1 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > - 6\\x > - 1\end{array} \right. \Leftrightarrow x > - 1\)
Vậy phương trình có nghiệm là \(x = 4\).