Cho phương trình
40 3 + 2 2 x + m 3 - 2 2 x + m - 80 = 0 (m là tham số). Có bao nhiêu giá trị nguyên của m để phương trình có hai nghiệm trái dấu?
A.19
B. vô số
C.1
D.20
a) Giải phương trình: x^2+9x^2/(x+3)^2=40 b) Tìm m sao cho phương trình:(m-1)x+3m-2=0 có nghiệm duy nhất thỏa mãn: x lớn hơn hoặc bằng 1
a) Ta có: \(x^2+\dfrac{9x^2}{\left(x+3\right)^2}=40\)
\(\Leftrightarrow\dfrac{\left(x^2+3x\right)^2+9x^2}{\left(x+3\right)^2}=40\)
\(\Leftrightarrow x^4+6x^3+9x^2+9x^2=40\left(x+3\right)^2\)
\(\Leftrightarrow x^4+6x^3+18x^2=40\left(x^2+6x+9\right)\)
\(\Leftrightarrow x^4+6x^3+18x^2-40x^2-240x-360=0\)
\(\Leftrightarrow x^4+6x^3-22x^2-240x-360=0\)
\(\Leftrightarrow x^4+2x^3+4x^3+8x^2-30x^2-60x-180x-360=0\)
\(\Leftrightarrow x^3\left(x+2\right)+4x^2\left(x+2\right)-30x\left(x+2\right)-180\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3+4x^2-30x-180\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3-6x^2+10x^2-60x+30x-180\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[x^2\left(x-6\right)+10x\left(x-6\right)+30\left(x-6\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\cdot\left(x-6\right)\left(x^2+10x+30\right)=0\)
mà \(x^2+10x+30>0\forall x\)
nên \(\left(x+2\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=6\end{matrix}\right.\)
Vậy: S={-2;6}
b) Ta có: (m-1)x+3m-2=0
\(\Leftrightarrow\left(m-1\right)x=2-3m\)
\(\Leftrightarrow x=\dfrac{2-3m}{m-1}\)
Để phương trình có nghiệm duy nhất thỏa mãn \(x\ge1\) thì \(\dfrac{2-3m}{m-1}\ge1\)
\(\Leftrightarrow\dfrac{2-3m}{m-1}-1\ge0\)
\(\Leftrightarrow\dfrac{2-3m-\left(m-1\right)}{m-1}\ge0\)
\(\Leftrightarrow\dfrac{2-3m-m+1}{m-1}\ge0\)
\(\Leftrightarrow\dfrac{-4m+3}{m-1}\ge0\)
hay \(\dfrac{3}{4}\le m< 1\)
Vậy: Để phương trình (m-1)x+3m-2=0 có nghiệm duy nhất thỏa mãn \(x\ge1\) thì \(\dfrac{3}{4}\le m< 1\)
Tìm giá trị của k sao cho:
a. Phương trình (2x + 1)(9x + 2k) – 5(x + 2) = 40 có nghiệm x = 2
b. Phương trình 2(2x+1)+18=3(x+2)(2x+k)2(2x+1)+18=3(x+2)(2x+k) có nghiệm x = 1
a. Thay x = 2 vào phương trình (2x + 1)(9x + 2k) – 5(x + 2) = 40, ta có:
(2.2+1)(9.2+2k)−5(2+2)=40⇔(4+1)(18+2k)−5.4=40⇔5(18+2k)−20=40⇔90+10k−20=40⇔10k=40−90+20⇔10k=−30⇔k=−3(2.2+1)(9.2+2k)−5(2+2)=40⇔(4+1)(18+2k)−5.4=40⇔5(18+2k)−20=40⇔90+10k−20=40⇔10k=40−90+20⇔10k=−30⇔k=−3
Vậy khi k = -3 thì phương trình (2x + 1)(9x + 2k) – 5(x + 2) = 40 có nghiệm x = 2
b. Thay x = 1 vào phương trình 2(2x+1)+18=3(x+2)(2x+k)2(2x+1)+18=3(x+2)(2x+k), ta có:
2(2.1+1)+18=3(1+2)(2.1+k)⇔2(2+1)+18=3.3(2+k)⇔2.3+18=9(2+k)⇔6+18=18+9k⇔24−18=9k⇔6=9k⇔k=69=232(2.1+1)+18=3(1+2)(2.1+k)⇔2(2+1)+18=3.3(2+k)⇔2.3+18=9(2+k)⇔6+18=18+9k⇔24−18=9k⇔6=9k⇔k=\(\frac{6}{9}\)=\(\frac{2}{3}\)
Vậy khi thì phương trình có nghiệm x = 1
thế x vào bấm máy tính nhanh nhứt :)))
Tìm giá trị k sao cho:
a) phương trình: 2x+k=x-1 có nghiệm x=-2
b) phương trình: (2x+1)(9x+2k)-5(x+2)=40 có nghiệm x=-2
c) phương trình:2(2x+1)+18=3(x+2)(2x+k) có nghiệm x=1
\(a,\Leftrightarrow-4+k=-3\Leftrightarrow k=1\\ b,\Leftrightarrow-3\left(2k-18\right)=40\\ \Leftrightarrow2k-18=-\dfrac{40}{3}\Leftrightarrow k=\dfrac{7}{3}\\ c,\Leftrightarrow10+18=9\left(2+k\right)\\ \Leftrightarrow k+2=\dfrac{28}{9}\Leftrightarrow k=\dfrac{10}{9}\)
Bài 5. Không giải phương trình, cho biết dấu các nghiệm
a) x x 2 13 40 0 . b) 5 7 1 0 x x 2 .
c) 3 5 1 0 x x 2
giải phương trình \(\frac{x^3}{\sqrt{5-x^2}}+8x^2=40\)
ĐK: \(5-x^2>0\)
\(\frac{x^3}{\sqrt{5-x^2}}-8\left(5-x^2\right)=0\)
Đặt: \(\sqrt{5-x^2}=t>0\)
ta có: \(x^3-8t^3=0\)
<=> \(\left(x-2t\right)\left(x^2+2xt+4t^2\right)=0\)
<=> x - 2t = 0 ( vì x^2 + 2xt + 4t^2 =( x+ t) ^2 + 3t^2 >0)
<=> x = 2t
Ta có: \(x=2\sqrt{5-x^2}\)
<=> \(\hept{\begin{cases}x\ge0\\5x^2=20\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge0\\x=\pm2\end{cases}}\Leftrightarrow x=2\)( thỏa mãn đk xđ)
vậy S = { 2 }
Bài 1 : giải phương trình:
(x+2)2-(x-2)3=12x(x-1)-8
Bài 2:giải phương trình
a.x4-4x3-19x2+106x-120=0
b .(x+1)(x+2)(x+4)(x+5)=40
1/
-x^3 -5x^2 + 4x +4
=> x1 =-5.5877............
x2=1.1895.............
x3=-0.6018............
Tìm giá trị của k sao cho: Phương trình (2x + 1)(9x + 2k) – 5(x + 2) = 40 có nghiệm x = 2.
Thay x = 2 vào phương trình (2x + 1)(9x + 2k) – 5(x + 2) = 40, ta có:
(2.2 + 1)(9.2 + 2k) – 5(2 + 2) = 40
⇔ (4 + 1)(18 + 2k) – 5.4 = 40
⇔ 5(18 + 2k) – 20 = 40
⇔ 90 + 10k – 20 = 40
⇔ 10k = 40 – 90 + 20
⇔ 10k = -30
⇔ k = -3
Vậy khi k = -3 thì phương trình (2x + 1)(9x + 2k) – 5(x + 2) = 40 có nghiệm x = 2.
Giải phương trình:(x+1)*(x+2)*(x+3)*(x+4)*(x+5)=40
chuyển toán lớp 8 thành toán lớp 1 đi rồi giải cho ?
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)=40\)
Đặt \(x+3=t\) Phương trình tương đương với
\(\left(t-2\right)\left(t-1\right)t\left(t+1\right)\left(t+2\right)=40\)
\(\Leftrightarrow\left(t^2-1\right)\left(t^2-4\right)t=40\)
\(\Leftrightarrow\left(t^4-5t^2+4\right)t=40\)
\(\Leftrightarrow t^5-5t^3+4t-40=0\)
Số xấu,không trình bày tại đây
hệ phương trình (1)\(\hept{\begin{cases}x^2-5y^2-8y=3\\\left(2x+4y-1\right)\sqrt{2x-y-1}=\left(4x-2y-3\right)\sqrt{x+2y}\end{cases}}\)
phương trình (2) \(\frac{^{^{x^3}}}{\sqrt{5-x^2}}+8x^2=40\)
Tìm giá trị của k sao cho:
a. Phương trình: 2x + k = x – 1 có nghiệm x = – 2.
b. Phương trình: (2x + 1)(9x + 2k) – 5(x + 2) = 40 có nghiệm x = 2
c. Phương trình: 2(2x + 1) + 18 = 3(x + 2)(2x + k) có nghiệm x = 1
d. Phương trình: 5(m + 3x)(x + 1) – 4(1 + 2x) = 80 có nghiệm x = 2
a. Thay x=-2 vào phương trình a , ta có :
2*(-2)+k=-2-1
=>-4+k=-3
=>k=-3-(-4)
=>k=1
Vậy giá trị k của phương trình a là 1 , với nghiệm x=-2
b.Thay x=2 vào phương trình b , ta có:
(2x+1)(9x+2k)-5(x+2)=40
=>(2*2+1)(9*2+2k)-5(2+2)=40
=>5(18+2k)-20=40
=>5(18+2k)=40+20
=>5(18+2k)=60
=>18+2k=60/5
=>18+2k=12
=>2k=12-18
=>2k=-6
=>k=-6/2
=>k=-3
Vậy giá trị k của phương trình b là -3 , với nghiệm x=2
c. Thay x=1 vào phương trình c , ta có:
2(2*1+1)+18=3(1+2)(2*1+k)
=>6+18=9(2+k)
=>24=9(2+k)
=>24/9=2+k
=>8/3-2=k
=>2/3=k
Vậy giá trị k của phương trình c là 2/3 , với nghiệm x=1
d.Thay x=2 vào phương trình d , ta có :
5(m+3*2)(2+1)-4(1+2*2)=80
=>5(m+6)3-20=80
=>15(m+6)=80+20
=>15(m+6)=100
=>m+6=100/15
=>m+6=20/3
=>m=20/3-6
=>m=2/3
Vậy giá trị m của phương trình d là 2/3 , với nghiệm x=2