Cho hàm số y = f(x), biết tại các điểm A, B, C đồ thị hàm số y = f(x) có tiếp tuyến được thể hiện trên hình vẽ. Mệnh để nào dưới đây là đúng?
Cho hàm số y = f(x), biết tại các điểm A, B, C đồ thị của hàm số y = f(x) có tiếp tuyến được thể hiện như hình vẽ bên. Mệnh đề nào dưới đây đúng?
A . f ' ( x C ) < f ' ( x A ) < f ' ( x B ) .
B . f ' ( x A ) < f ' ( x B ) < f ' ( x C ) .
C . f ' ( x A ) < f ' ( x C ) < f ' ( x B ) .
D . f ' ( x B ) < f ' ( x A ) < f ' ( x C ) .
Cho hàm số y=f(x) có đồ thị (C) như hình vẽ bên và có đạo hàm f'(x) liên tục trên khoảng (-∞;+∞).Đường thẳng ở hình vẽ bên là tiếp tuyến của (C) tại điểm có hoành độ x=0. Gọi m là giá trị nhỏ nhất của hàm số y=f'(x). Mệnh đề nào dưới đây đúng ?
A. m < -2
B. -2 < m < 0.
C. 0 < m < 2
D. m > 2
Cho hàm số y=f(x) có đồ thị y=f'(x) cắt trục Ox hoành tại ba điểm có hoành độ -2<a<b như hình vẽ. Biết rằng f(-2)+f(1)=f(a)+f(b). Để hàm số y = f ( x + m ) có 7 điểm cực trị thì mệnh đề nào dưới đây là đúng
A. f(a)>0>f(-2)
B. f(-2)>0>f(a)
C. f(b)>0>f(a)
D. f(b)>0>f(-2)
Cho 3 hàm số y=f(x), y=g(x), y = f ( x ) + 3 g ( x ) + 3 . Biết hệ số góc các tiếp tuyến của đồ thị các hàm số đã cho tại điểm có hoành độ x=1 là bằng nhau và khác 0. Mệnh đề nào dưới đây đúng
A. f ( 1 ) ≤ - 11 4
B. f ( 1 ) < - 11 4
C. f ( 1 ) > - 11 4
D. f ( 1 ) ≥ - 11 4
Cho hàm số y=f(x) có đồ thị y=f '(x) cắt trục Ox tại ba điểm có hoành độ a<b<c như hình vẽ.
Mệnh đề nào dưới đây là đúng?
A.
B.
C.
D.
Chọn A
Đồ thị của hàm số liên tục trên các đoạn và , lại có là một nguyên hàm của .
Do đó diện tích của hình phẳng giới hạn bởi các đường:
là:
.
Vì
Tương tự: diện tích của hình phẳng
giới hạn bởi các đường: là:
.
.
Mặt khác, dựa vào hình vẽ ta có: .
Từ (1), (2) và (3) ta chọn đáp án A.
( có thể so sánh với dựa vào dấu của trên đoạn và so sánh với dựa vào dấu của trên đoạn )
Cho hàm số y = f(x) có đồ thị y = f’(x) cắt trục Ox tại 3 điểm có hoành độ a<b<c như hình vẽ. Mệnh đề nào dưới đây là đúng
A. f(a)>f(b)>f(c)
B. f(c)>f(b)>f(a)
C. f(c)>f(a)>f(b)
D. f(b)>f(a)>f(c)
Đáp án C
Phương pháp:
+) đồng biến trên (a;b)
+) nghịch biến trên (a;b)
Cách giải:
Quan sát đồ thị của hàm số y = f’(x), ta thấy:
+) đồng biến trên (a;b) => f(a) > f(b)
+) nghịch biến trên (b;c) => f(b)<f(c)
Như vậy, f(a)>f(b), f(c)>f(b)
Đối chiếu với 4 phương án, ta thấy chỉ có phương án C thỏa mãn
Cho hàm số y=f(x) có đạo hàm liên tục trên R và có
đồ thị y=f'(x) như hình vẽ bên. Đặt g ( x ) = f ( x ) - x 2 2 biết rằng
đồ thị của hàm g(x) luôn cắt trục hoành tại 4 điểm phân biệt.
Mệnh đề nào dưới đây đúng
A. g ( 0 ) > 0 g ( 1 ) < 0 g ( - 2 ) g ( 1 ) > 0
B. g ( 0 ) > 0 g ( 1 ) > 0 g ( - 2 ) g ( 1 ) < 0
C. g ( 1 ) < 0 g ( 0 ) > 0
D. g ( 0 ) > 0 g ( - 2 ) < 0
Cho hàm số y=f(x) có đồ thị là (C), hàm số y=f'(x) có đồ thị như hình vẽ bên. Tiếp tuyến với (C) tại điểm có hoành độ x=2 cắt (C) tại hai điểm phân biệt có hoành độ lần lượt là a,b
Giá trị ( a - b ) 2 thuộc khoảng nào dưới đây
A. ( 0 ; 9 )
B. ( 12 ; 16 )
C. ( 16 ; + ∞ )
D. ( 9 ; 12 )
Cho hàm số y = f(x) liên tục trên [a;b] có đồ thị hàm số y = f'(x) như hình vẽ sau: Mệnh đề nào dưới đây đúng?
A. ∫ a b f ' ( x ) d x là diện tích hình thang cong ABMN
B. ∫ a b f ' ( x ) d x là độ dài đoạn BP.
C. ∫ a b f ' ( x ) d x là độ dài NM.
D. ∫ a b f ' ( x ) d x là độ dài đoạn cong AB