Cho dãy số ( u n ) thỏa mãn u 1 = 2 , u n + 1 = u n 3 với mọi n ≥ 1 . Số tự nhiên n nhỏ nhất để u n > 2 3 2018 là
A. 2010.
B. 2020.
C. 2019.
D. 2018.
Dãy số thỏa mãn với mọi . Tính lim un
.
tìm số nguyên n thỏa mãn :
(n+1)(n+3)=0
(giá trị tuyệ đói của n+2)(n2-1)=0
Số số tự nhiên n thỏa mãn 3n+8 chia hết cho n+2
Vậy n=
ta có:
3n+8= 3.(n+2)+2 (1)
Mà n+2chia hết cho n+2 suy ra 3.(n+2) chia hết cho n+2 (2)
Từ (1) và (2) suy ra 2 chia hết cho n+2.
Suy ra n+2 thuộc {1;2}.
Suy ra n=0
Vậy có 1 giá trị n thỏa mãn
Đúng 100% nha, tick cho mình nhé
3n + 8 chia hết cho n + 2 => 3(n + 2) + 2 chia hết cho n + 2
=> n + 2 \(\in\)Ư(2) = {1;2}
=> n = {-1;0}
Vì n\(\in\)N nên n = 0
Cho dãy u(n) thỏa mãn log 3 u 1 2 - 3 log u 5 = log 3 u 2 + 9 - log u 1 6 và u n + 1 = u n + 3 u 1 > 0 với mọi n≥1 Đặt S n = u 1 + u 2 + . . . + u n Tìm giá trị nhỏ nhất của n để S n > 5 n 2 + 2018 2
A. 1647
B. 1650
C. 1648
D. 1165
1.Cho a,b lak các số tự nhiên thỏa mãn đk: \(a^2+b^2⋮7\).CMR:
a vf b đều chia hết cho 7
2.Cho \(A=n^{2012}+n^{2011}+1\)
Tìm tất cả stn n để A nhận giá trị lak 1 số nguyên tố.
Cho dãy (un) thỏa mãn: \(\left\{{}\begin{matrix}u_1=5\\u_{n+1}=\dfrac{u^{2022}_n+3.u_n+16}{u_n^{2021}-u_n+11}\end{matrix}\right.\), ∀nϵN*
CMR (un) tăng
Xét hàm số \(f\left(x\right)=\dfrac{x^{2022}+3x+16}{x^{2021}-x+11}\), ta cần cm
\(f\left(x\right)\ge x\) (*)
Thật vậy, (*) \(\Leftrightarrow x^{2022}+3x+16\ge x^{2022}-x^2+11x\)
\(\Leftrightarrow x^2-8x+16\ge0\)
\(\Leftrightarrow\left(x-4\right)^2\ge0\) (luôn đúng)
Vậy \(f\left(x\right)\ge x,\forall x\)
\(\Rightarrow u_{n+1}=f\left(u_n\right)\ge u_n\) nên \(\left(u_n\right)\) là dãy tăng.
Cho m, n thuộc N và p là số nguyên tố thỏa mãn: p/m-1=m+n/p
CMR:p2=n+2
Help me! Thanks trước!
1. Tìm 20 số hạng đầu của dãy số (un) cho bởi:
\(\hept{\begin{cases}u_1=1\\u_{n+1}=\frac{u_{n+2}}{u_{n+1}}\end{cases}},n\inℕ^∗\)
2. Cho dãy số: u1=2; u2=3; u3=18; u4= 67; u5=184
Tính u10; u11; u12; u13; u14; u15