Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 8 2018 lúc 4:23

Nguyễn Hải Vân
Xem chi tiết
thu nguyen
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 8 2017 lúc 3:36

Chọn A

f ' ( x )  đổi dấu khi x chạy qua -1 và 3 nên hàm số có 2 điểm cực trị.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 6 2017 lúc 5:08

Đáp án B

(1) là phương trình hoành độ giao điểm của đồ thị f'(t)  và đường thẳng d : y = -t (hình vẽ)

Dựa vào đồ thị của f'(t) và đường thẳng y =-t ta có

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 1 2017 lúc 7:47

Minh Nguyệt
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 1 2021 lúc 21:57

\(f'\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x-sinx=0\\x-m-3=0\\x-\sqrt{9-m^2}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=m+3\\x=\sqrt{9-m^2}\end{matrix}\right.\) 

Do hệ số bậc cao nhất của x dương nên:

- Nếu \(m=-3\Rightarrow f'\left(x\right)=0\) có nghiệm bội 3 \(x=0\) \(\Rightarrow x=0\) là cực tiểu (thỏa mãn)

- Nếu \(m=3\Rightarrow x=0\) là nghiệm bội chẵn (không phải cực trị, ktm)

- Nếu \(m=0\Rightarrow x=3\) là nghiệm bội chẵn và \(x=0\) là nghiệm bội lẻ, đồng thời \(x=0\) là cực tiểu (thỏa mãn)

- Nếu \(m\ne0;\pm3\) , từ ĐKXĐ của m \(\Rightarrow-3< m< 3\Rightarrow\left\{{}\begin{matrix}m+3>0\\\sqrt{9-m^2}>0\end{matrix}\right.\)

Khi đó \(f'\left(x\right)=0\) có 3 nghiệm pb trong đó \(x=0\) là nghiệm nhỏ nhất

Từ BBT ta thấy \(x=0\) là cực tiểu

Vậy \(-3\le m< 3\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 7 2017 lúc 3:19

Chọn C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 2 2017 lúc 3:14

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 5 2017 lúc 11:31