Cho hàm số y = f(x) có bảng biến thiên như sau.
Số nghiệm của phương trình f ( x ) - x 2 + 2 x - 1 = 0 là:
A. 1.
B. vô số.
C. 0.
D. 2.
Cho hàm số y=f(x) có bảng biến thiên như sau:
Số nghiệm thực của phương trình f(f(x))+2 bằng
A. 4
B. 3
C. 2
D. 6
Cho hàm số y=f(x) có bảng biến thiên như sau:
Số nghiệm thực của phương trình f(x)=4 bằng:
A. 4
B. 3
C. 2
D. 1
Cho hàm số y = f(x) có bảng biến thiên như hình vẽ.
Số nghiệm của phương trình f(x) + 3 = 0là
A. 0
B. 3
C. 2
D. 1
Cho hàm số y = f(x) có bảng biến thiên như sau:
Số nghiệm của phương trình f(x) - 2 = 0 là:
A. 0
B. 2
C. 1
D. 3
Cho hàm số y=f(x) có bảng biến thiên như sau
Số nghiệm thực của phương trình f(x)=4 bằng
A. 4
B. 3
C. 2
D. 1
Chọn đáp án C.
Phương pháp
Số nghiệm của phương trình f(x)=4 là số giao điểm của đồ thị hàm số y=f(x) và đường thẳng y=4 song song với trục hoành.
Cách giải
Số nghiệm của phương trình f(x)=4 là số giao điểm của đồ thị hàm số y=f(x) và đường thẳng y=4 song song với trục hoành.
Dựa vào BBT ta thấy đường thẳng y=4 cắt đồ thị hàm số y=f(x) tại 2 điểm phân biệt.
Vậy phương trình f(x)=4 có 2 nghiệm phân biệt
Cho hàm số y = f(x) có bảng biến thiên như sau:
Số nghiệm của phương trình f(x) - 6 = 0 là
A. 3
B. 2
C. 1
D. 0
Đáp án B
Phương pháp giải:
Dựa vào bảng biến thiên, xác định giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m
Lời giải:
Dựa vào bảng biến thiên, ta thấy f (x) = 6 > 5 nên phương trình có 2 nghiệm phân biệt.
Cho hàm số y = f(x) có bảng biến thiên như sau
Số nghiệm của phương trình f(x) – 4 = 0 là
A. 2.
B. 3.
C. 0.
D. 1.
Cho hàm số y = f ( x ) có bảng biến thiên như sau:
Số nghiệm của phương trình f ( x ) - 3 = 0 là
A. 3
B. 0
C. 2
D. 1
Cho hàm số y = f(x) có bảng biến thiên như sau:
Số nghiệm của phương trình f(x) - 2 = 0 là:
A. 0
B. 3
C. 1
D. 2
Đáp án B
f ( x ) − 2 = 0 ⇔ f ( x ) = 2
Dựa vào bảng biến thiên để xét sự tương giao giữa đồ thị hàm số f(x) và đường thẳng x = 2 ta thấy pt có 3 nghiệm
Cho hàm số y=f(x) có bảng biến thiên như sau:
Số nghiệm của phương trình f(x)-2=0 là:
A. 0
B. 3
C. 1
D. 2
Đáp án B.
f ( x ) - 2 = 0 ⇔ f ( x ) = 2
Dựa vào bảng biến thiên để xét sự tương giao giữa đồ thị hàm số f(x) và đường thẳng x=2 ta thấy pt có 3 nghiệm.