Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: x = 0 y = t z = 1 và điểm A(0;4;0). Gọi M là điểm cách đều đường thẳng d và trục x'Ox. Khoảng cách ngắn nhất giữa A và M bằng
A. 1 2
B. 3 2
C. 6
D. 65 2
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng . Phương trình đường thẳng d nằm trong (α): x + 2y - 3z - 2 = 0 và cắt hai đường thẳng d1;d2 là:
A. x + 3 5 = y - 2 - 1 = z - 1 1
B. x + 3 - 5 = y - 2 1 = z - 1 - 1
C. x - 3 - 5 = y + 2 1 = z + 1 - 1
D. x + 8 1 = y - 3 3 = z - 4
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x + y -2z - 1 = 0 và đường thẳng d: x - 2 1 = y - 2 1 = z - 2 . Tọa độ giao điểm của d và là
B. (1;0;0)
C. (2;2;0)
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d : x + 3 2 = y + 1 1 = z - 3 1 và mặt phẳng P : x + 2 y - z + 5 = 0 . Tìm tọa độ giao điểm M của đường thẳng d và mặt phẳng (P).
A. M(-1 ;0 ;4)
B. M(1 ;0 ;-4)
D. M(-5 ;-2 ;2)
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d : x + 2 2 = y + 1 1 = z - 3 1 và mặt phẳng P : x + 2 y - z + 5 = 0 . Tìm tọa độ giao điểm M của đường thẳng d và mặt phẳng (P)
A . M ( - 1 ; 0 ; 4 )
B . M ( 1 ; 0 ; - 4 )
C . M ( 7 3 ; 5 3 ; 17 3 )
D . M ( - 5 ; - 2 ; 2 )
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = t y = 1 z = - 1 - 2 t . Điểm N’ đối xứng với điểm N(0;2;4) qua đường thẳng d có tọa độ là:
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 1 2 = y + 2 1 = z - 1 3 và mặt phẳng P : 3 x + y - 2 z + 5 = 0 . Tìm tọa độ giao điểm M của d và (P).
A. M(3;-4;4)
B. M(-5;-4;-4)
C. M(-3;-4;-4)
D. M(5;0;8)
Đáp án C.
Gọi M(a;b;c) là giao điểm của d và (P)
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x+2y-z+5=0 và đường thẳng d : x + 3 2 = y + 1 1 = z - 3 1 Góc giữa đường thẳng (d) và mặt phẳng (P) là:
Trong không gian hệ tọa độ Oxyz, cho mặt
phẳng (P): x - 2y + 3z - 6 = 0.
Vectơ chỉ phương của đường thẳng d vuông
góc với (P) là.
Đáp án C
Ta có VTCP (P): n → (1; -2; 3), do d vuông góc với (P) nên u d → = (1; -2; 3)
Trong không gian hệ tọa độ Oxyz, cho mặt phẳng (P): = x-2y+3z-6=0. Vectơ chỉ phương của đường thẳng d vuông góc với (P) là
A. (-1;-2;-3)
B. (-1;-2;3)
C. (1;-2;3)
D. (-1;2;3)
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ : x + 2 1 = y - 2 1 = z - 1 (P): x + 2y - 3z + 4 = 0. Phương trình tham số của đường thẳng d nằm trong (P), cắt và vuông góc đường thẳng ∆ là
A. x = - 2 + 2 t y = 1 - t z = 1 + t
B. x = 1 - 3 t y = - 2 + 3 t z = - 1 + t
C. x = - 3 - 3 t y = 1 + 2 t z = 1 + t
D. x = - 3 + t y = 1 - 2 t z = 1 - t