Trong không gian Oxyz , cho đường thẳng d : x = 0 y = t z = 1 và điểm A(0;4;0). Gọi M là điểm cách đều đường thẳng d và trục x’Ox. Khoảng cách ngắn nhất giữa A và M bằng
A. 1 2
B. 3 2
C. 6
D. 65 2
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(1;2;3) và đường thẳng (d): x - 2 2 = y + 2 - 1 = z - 3 1 . Gọi điểm B thuộc trục Ox sao cho AB vuông góc với đường thẳng (d). Khoảng cách từ B đến mặt phẳng ( α ): 2x+2y-z-1=0 là:
A. 2
B. 2 3
C. 1 3
D. 1
Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm M(-2;-2;1), A(1;2;-3) và đường thẳng d : x + 1 2 = y - 5 2 = z - 1 . Tìm vectơ chỉ phương u → của dường thẳng D đi qua M, vuông góc với đường thẳng d, đồng thời cách điểm A một khoảng lớn nhất
A. u → = 4 ; - 5 ; - 2
B. u → = 1 ; 0 ; 2
C. u → = 8 ; - 7 ; 2
D. u → = 1 ; 1 ; - 4
Trong không gian với hệ trục tọa độ Oxyz, cho d : x - 3 2 = y + 2 1 = z + 1 - 1 và P : x + y + z + 2 = 0 . Có bao nhiêu đường thẳng ∆ nằm trong mặt phẳng (P) mà ∆ ⊥ d và khoảng cách từ M đến ∆ bằng 42 . Biết M là giao điểm của (P) và d.
A. 2
B. 0
C. 1
D. 4
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d có phương trình x − 1 2 = y − 3 = z − 2 0 và mặt phẳng P : x + y = 0 . Tìm tọa độ điểm M trên d có hoành độ dương sao cho khoảng cách từ M đến (P) bằng 2 .
A. M 3 ; − 3 ; 2
B. M 7 ; − 9 ; 2
C. M 5 ; − 6 ; 2
D. M − 1 ; 3 ; 2
Trong không gian với hệ tọa độ Oxyz cho mặt phẳng P : x + y - 4 z = 0 đường thẳng d: x - 1 2 = y + 1 - 1 = z - 3 1 và điểm A 1 ; 3 ; 1 thuộc mặt phẳng (P). Gọi ∆ là đường thẳng đi qua A nằm trong mặt phẳng (P) và cách d một khoảng cách lớn nhất. Gọi u → = 1 ; b ; c là một vectơ chỉ phương của đường thẳng ∆ . Tính b + c
A. b + c = - 6 11
B. b + c = 0
C. b + c = 1 4
D. b + c = 4.
Trong không gian với hệ trục tọa độ Oxyz cho đường thẳng d có phương trình x − 1 1 = y + 1 2 = z − 2 − 1 và mặt phẳng P : x + 2 y − 2 z + 4 = 0 . Tìm tọa độ điểm M trên d có tung độ dương sao cho khoảng cách từ M đến (P) bằng 2.
A. M 3 ; 3 ; 0
B. M 2 ; 1 ; 1
C. M 0 ; - 3 ; 3
D. M 1 ; - 1 ; 2
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (α): 2x+y-2z-2 = 0 và đường thẳng có phương trình d : x + a 1 = y + 2 2 = z + 3 2 và điểm A(1/2;1;1) Gọi ∆ là đường thẳng nằm trong mặt phẳng (α) , song song với d, đồng thời cách d một khoảng bằng 3. Đường thẳng ∆ cắt mặt phẳng (Oxy) tại điểm B. Độ dài đoạn thẳng AB bằng:
A. 7/3
B. 7/2
C. 21 2
D. 3/2
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: x - 3 2 = y + 2 1 = z + 1 - 1 và mặt phẳng (P): x + y + z + 2 = 0. Đường thẳng ∆ nằm trong mặt phẳng (P), vuông góc với đường thẳng d đồng thời khoảng cách từ giao điểm I của d với (P) đến ∆ bằng 42 . Gọi M(5;b;c) là hình chiếu vuông góc của I trên ∆. Giá trị của bc bằng
A. - 10
B. 10
C. 12
D. - 20