Tìm tập nghiệm s của bất phương trình: 1 3 1 x > 3
Tìm tập nghiệm S của bất phương trình ( 3 - 1 ) ( x + 1 ) ) > 4 - 2 3
A. S = [ 1 ; + ∞ )
B. S = ( 1 ; + ∞ )
C. S = [ - ∞ ; 1 ]
D. S = ( - ∞ ; 1 )
Tìm tập nghiệm S của bất phương trình log0,2 (x – 1) < log0,2 (3 – x).
A. S = - ∞ ; 3
B. S = 2 ; 3
C. S = 2 ; + ∞
D. S = 1 ; 2
Với m là tham số thực dương khác 1. Hãy tìm tập nghiêm S của bất phương trình log m 2 x 2 + x + 3 ≤ log m 3 x 2 − x . Biết rằng x = 1 là một nghiệm của bất phương trình
A. S = − 2 ; 0 ∪ 1 3 ; 3
B. S = − 1 ; 0 ∪ 1 3 ; 2
C. S = − 1 ; 0 ∪ 1 3 ; 3
D. S = − 1 ; 0 ∪ 1 ; 3
Đáp án C
Vì x = 1 là một nghiệm của bất phương trình
⇒ log m 4 ≤ log m 2 ⇔ log m 2 ≤ 0 ⇔ m ∈ 0 ; 1 .
Khi đó, bất phương trình
log m 2 x 2 + x + 3 ≤ log m 3 x 2 − x ⇔ 3 x 2 − x > 0 2 x 2 + x + 3 ≥ 3 x 2 − x ⇔ − 1 ≤ x < 0 1 3 < x ≤ 3 .
Với m là tham số thực dương khác 1. Hãy tìm tập nghiêm S của bất phương trình logm(2x2 + x + 3) ≤ logm(3x2 - x). Biết rằng x = 1 là một nghiệm của bất phương trình.
Đáp án C
Vì x = 1 là một nghiệm của bất phương trình
Khi đó, bất phương trình
Tìm tập nghiệm S của bất phương trình log 2 2 x - 3 < 1
A. [ 2 , 3 )
B. 3 2 , 3
C. [2,3]
D. - ∞ , 3
1) Tìm tập nghiệm S của bất phương trình | 2x+1| > x+1
2) Tìm tất cả giá trị của tham số m để bất phương trình -x^2+x-m>0 vô nghiệm
2: \(\text{Δ}=1^2-4\cdot\left(-1\right)\cdot\left(-m\right)=1-4m\)
Để bất phương trình vô nghiệm thì \(\left\{{}\begin{matrix}1-4m< 0\\-1< 0\end{matrix}\right.\Leftrightarrow m>\dfrac{1}{4}\)
Tìm tập nghiệm S của bất phương trình l o g 2 ( 1 - 2 x ) ≤ 3 .
A. S = - 7 2 ; - 1 2
B. S = - 7 2 ; + ∞
C. S = - 5 2 ; 1 2
D. S = - 7 2 ; 1 2
Tìm tập nghiệm S của bất phương trình 1 3 x + 1 - 3 > 0
Tìm tập nghiệm S của bất phương trình log 2 1 - 2 x ≤ 3 .
Đáp án C
Điều kiện: x < 1 2 .
Bất phương trình tương đương
1 - 2 x ≤ 8 ⇔ x ≥ - 7 2 ⇒ C h ọ n C .
Tìm tập nghiệm S của bất phương trình 1 3 x + 1 - 3 > 0
A. S = - ∞ ; - 2
B. S = - 1 ; + ∞
C. S = 1 ; + ∞
D. S = - 2 ; + ∞
Đáp án A
3 - x - 1 > 3 1 → 3 > 1 - x - 1 > 1 ⇔ x < - 2