Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Minh Hằng
Xem chi tiết
nguyễn hùng lâm
25 tháng 12 2022 lúc 17:42

a: Vì n+2 và n+3 là hai số tự nhiên liên tiếp

nên n+2 và n+3 là hai số nguyên tố cùng nhau

b) gọi d = ƯCLN(2n + 3; 3n + 5)

--> 3(2n + 3) và 2(3n + 5) chia hết cho d

--> (6n + 10) - (6n + 9) chia hết cho d

--> 1 chia hết cho d

--> d = 1

--> 2n + 3 và 3n + 5 nguyên tố cùng nhau

Chi Quỳnh
Xem chi tiết
Nguyễn Minh Sơn
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 10 2021 lúc 23:22

a: \(d=UCLN\left(n+1;n+2\right)\)

\(\Leftrightarrow n+2-n-1⋮d\)

hay d=1

b: \(d=UCLN\left(2n+2;2n+3\right)\)

\(\Leftrightarrow2n+3-2n-2⋮d\)

hay d=1

кαвαиє ѕнιяσ
Xem chi tiết

k hộ mik nhéundefinedundefined

Khách vãng lai đã xóa

TL

undefinedundefinedundefinedk hộ mik

Hoktot~

Khách vãng lai đã xóa
Nguyễn Lê Phước Thịnh
7 tháng 10 2021 lúc 23:22

a: \(d=UCLN\left(n+1;n+2\right)\)

\(\Leftrightarrow n+2-n-1⋮d\)

hay d=1

b: \(d=UCLN\left(2n+2;2n+3\right)\)

\(\Leftrightarrow2n+3-2n-2⋮d\)

hay d=1

Bùi Ngân Hà
Xem chi tiết
Võ Đông Anh Tuấn
8 tháng 6 2016 lúc 10:00

Gọi ƯCLN(2n+3;n+2)=d

Ta có: 2n+3 chia hết cho d;n+2 chia hết cho d

=>2n+3 chia hết cho d; 2(n+2)chia hết cho d

=> 2n+3 chia hết cho d;2n+4 chia hết cho d

=>[2n+4-(2n+3)]chia hết cho d

=>2n+4-2n-3 chia hết cho d

=>1 chia hết cho d hay d=1=> ƯCLN(2n+3;n+2)=1

Vậy với mọi số tự nhiên n thì 2 số sau 2n+3 và n+2 là số nguyên tố cùng nhau

Chúc bạn học tốt!^_^

Oo Bản tình ca ác quỷ oO
8 tháng 6 2016 lúc 10:05

trong câu hỏi tương tự đó bn!!!!

787685999679

nguyễn minh ngọc
Xem chi tiết
Hoàng Hải Long
19 tháng 7 2017 lúc 21:29

Gọi UCLN 2n + 3, n + 2 là d, khi đó:

\(\hept{\begin{cases}2n+3⋮d\\2\left(n+2\right)⋮d\end{cases}\Rightarrow2n+4-2n-3⋮d}\)

\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)\Rightarrow d=1\) do n là số tự nhiên

Vậy (2n + 3,n + 2) = 1 (đpcm)

Mạnh Châu
20 tháng 7 2017 lúc 6:20

Gọi ƯCLN \(\left(2n+3;n+2\right)\)\(d\)

Ta có:

\(\hept{\begin{cases}n+2=2n+4\\2n+3\end{cases}=2n+4-2n+3=d}\)

Mà \(1⋮d\)và \(Ư\left(1\right)\Rightarrow d=1\)

Vậy \(2n+3\)và \(n+2\)là số nguyên tố cùng nhau \(\left(đpcm\right)\)

Trang Lê
Xem chi tiết
Đỗ Lê Tú Linh
23 tháng 6 2015 lúc 9:36

Gọi ƯCLN(2n+3;n+2)=d

Ta có: 2n+3 chia hết cho d;n+2 chia hết cho d

=>2n+3 chia hết cho d; 2(n+2)chia hết cho d

=> 2n+3 chia hết cho d;2n+4 chia hết cho d

=>[2n+4-(2n+3)]chia hết cho d

=>2n+4-2n-3 chia hết cho d

=>1 chia hết cho d hay d=1=> ƯCLN(2n+3;n+2)=1

Vậy với mọi số tự nhiên n thì 2 số sau 2n+3 và n+2 là số nguyên tố cùng nhau

Chúc bạn học tốt!^_^

Đỗ Ngọc Hà Giang
Xem chi tiết
Akai Haruma
18 tháng 11 2023 lúc 20:12

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

Akai Haruma
18 tháng 11 2023 lúc 20:15

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

Akai Haruma
18 tháng 11 2023 lúc 20:16

Bài 2:

c.

Gọi $d=ƯCLN(2n+1, n+1)$

$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$

Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.

d.

Gọi $d=ƯCLN(n+1, 3n+4)$

$\Rightarrow n+1\vdots d; 3n+4\vdots d$

$\Rightarrow 3n+4-3(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$

$\Rightarrow$ 2 số này nguyên tố cùng nhau.

Nguyễn Hà Minh Nghĩa
Xem chi tiết
Akai Haruma
17 tháng 12 2021 lúc 23:45

Lời giải:
a. Gọi $d$ là ƯCLN $(n+2, n+3)$

$\Rightarrow n+2\vdots d, n+3\vdots d$

$\Rightarrow (n+3)-(n+2)\vdots d$ hay $1\vdots d$

$\Rightarrow d=1$
Vậy $ƯCLN(n+2, n+3)=1$ hay $n+2, n+3$ nguyên tố cùng nhau.

b.

Gọi $d$ là ƯCLN $(2n+3, 3n+5)$

$\Rightarrow 2n+3\vdots d$ và $3b+5\vdots d$

$\Rightarrow 2(3n+5)-3(2n+3)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$

Vậy $(2n+3,3n+5)=1$ nên 2 số này nguyên tố cùng nhau.