Cho hàm số y = f x có đạo hàm f ' x = x 2 x - 1 x - 2 3 x - 1 , ∀ x . Số điểm cực trị của hàm số đã cho bằng
A.2
B. 1
C. 3
D. 4
Cho hàm số y= f(x) có đạo hàm trên R và đồ thị hình bên dưới là đồ thị của đạo hàm số : y= f’(x) . Hàm số y= g(x) = f(x) + x đạt cực tiểu tại điểm
A. x= 0
B.x= 1
C. x= 2
D. Không có điểm cực tiểu
Cho hàm số y = f(x) có đạo hàm trên R và bảng xét dấu của đạo hàm như sau:
Hàm số y= f(x) có bao nhiêu điểm cực trị?
A. 2
B. 0
C. 1
D. 3
Đáp án A
Dựa vào bảng biến thiên ta thấy rằng .
đổi dấu khi qua hai điểm và không đổi dấu khi qua điểm x=1 nên hàm số y= f(x) có hai diểm cực trị.
Cho hàm số y=f(x) có đạo hàm trên ℝ và bảng xét dấu của đạo hàm như sau:
Hàm số y=f(x)có bao nhiêu điểm cực trị?
A. 2.
B. 0.
C. 1.
D. 3.
Dựa vào bảng biến thiên ta thấy rằng f’(-2)=f’(1)=f’(3)=0.
f’(x)đổi dấu khi qua hai điểm x=-2; x=3 và f’(x) không đổi dấu khi qua điểm x=1 nên hàm số y=f(x) có hai diểm cực trị.
Đáp án A
Cho hàm số y = f(x) có đạo hàm trên R và đồ thị hình bên dưới là đồ thị của đạo hàm f’(x) .
Hỏi hàm số y= g( x) = f( x) + 3x có bao nhiêu điểm cực trị ?
A. 2.
B. 3.
C. 4.
D. 7.
Cho hàm số liên tục trên khoảng (a;b) và x 0 ∈ ( a ; b ) . Có bao nhiêu mệnh đề đúng trong các mệnh đề sau?
(1) Hàm số đạt cực trị tại điểm x 0 khi và chỉ khi f ' ( x 0 ) = 0 .
(2) Nếu hàm số y = f ( x ) có đạo hàm và có đạo hàm cấp hai tại điểm x 0 thỏa mãn điều kiện f ' ( x 0 ) = f ' ' ( x 0 ) = 0 thì điểm x 0 không phải là điểm cực trị của hàm số y = f ( x ) .
(3) Nếu f'(x) đổi dấu khi x qua điểm x 0 thì điểm x 0 là điểm cực tiểu của hàm số y = f ( x ) .
(4) Nếu hàm số y = f ( x ) có đạo hàm và có đạo hàm cấp hai tại điểm x 0 thỏa mãn điều kiện f ' ( x 0 ) = 0 , f ' ' ( x 0 ) > 0 thì điểm x 0 là điểm cực tiểu của hàm số y = f ( x ) .
A. 1
B. 2
C. 0
D. 3
Đáp án A
Phương pháp:
Dựa vào khái niệm cực trị và các kiến thức liên quan.
Cách giải:
(1) chỉ là điều kiện cần mà không là điều kiện đủ.
VD hàm số y = x3 có y' = 3x2 = 0 ⇔ x = 0. Tuy nhiên x = 0 không là điểm cực trị của hàm số.
(2) sai, khi f''(x0) = 0, ta không có kết luận về điểm x0 có là cực trị của hàm số hay không.
(3) hiển nhiên sai.
Vậy (1), (2), (3): sai; (4): đúng
Cho hàm số y=f(x) có đạo hàm f ' ( x ) = x x + 2 4 x 2 + 4 . Số điểm cực trị của hàm số y=f(|x|) là
A. 3
B. 2.
C. 0
D. 1.
Cho hàm số y= f( x) có đạo hàm là hàm số y= f’(x) trên R. Biết rằng hàm số y= f’ ( x-2) + 2 có đồ thị như hình vẽ bên dưới. Hàm số y= f( x) nghịch biến trên khoảng nào?
A. .
B. (- 1; 1)
C. .
D. .
Cho hàm số y=f(x) có đạo hàm f ' ( x ) = x 2 ( x 2 - 1 ) . Điểm cực tiểu của hàm số y=f(x) là:
A. x = 0.
B. x = -1.
C. y = 0.
D. x = 1
Cho hàm số y= f( x) có đạo hàm liên tục trên R, hàm số y= f’ (x-2) có đồ thị hàm số như hình bên. Số điểm cực trị của hàm số y= f( x) là :
A. 0
B. 2
C. 1
D. 3
Ta có: f' (x - 2) = f' (x).(x-2)' = f'(x)
Do đó; đồ thị hàm số y= f’ (x) có hình dạng tương tự như trên.
Đồ thị hàm số y= f( x-2) có 3 điểm cực trị khi và chỉ khi đồ thị hàm số y= f( x) cũng có 3 điểm cực trị.
Chọn D.
Cho hàm số y = f(x) có đạo hàm liên tục trên R, hàm số y = f’(x – 2) có đồ thị hàm số như hình bên. Số điểm cực trị của hàm số y = f(x) là :
A. 0
B. 2
C. 1
D. 3
Đáp án D
Phương pháp : Nhận xét : f’(x – 2) = f’(x)
Cách giải : Ta có : f’(x – 2) = (x – 2)’. f’(x) = f’(x) → Đồ thị hàm số y = f’(x) có hình dạng tương tự như trên.
Đồ thị hàm số y = f(x – 2)có 3 điểm cực trị => Đồ thị hàm số y = f(x) cũng có 3 điểm cực trị