Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 6 2017 lúc 2:25

Chọn B

Từ đồ thị của hàm số f'(x) trên đoạn [0;4] ta có bảng biến thiên của hàm số trên đoạn [0;4] như sau:

Từ bảng biến thiên ta có 

Mặt khác 

Suy ra 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 2 2017 lúc 16:09

Dựa vào bảng xét dấu của f '(x) ta có bảng biến thiên của hàm số  trên đoạn [0;5] như sau

Suy ra Và 

Ta có 

Vì f(x)  đồng biến trên đoạn [2;5] nên 

⇒ f(5)>f(0)

Vậy

Chọn đáp án D.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 4 2019 lúc 17:47

Chọn A

Dựa vào đồ thị của hàm f'(x) ta có bảng biến thiên.

Vậy giá trị lớn nhất M = f(2)

Hàm số đồng biến trên khoảng (0;2) nên f(2) > f(1) => f(2) - f(1) > 0 .

Hàm số nghịch biến trên khoảng (2;4) nên f(2) > f(3) => f(2) - f(3) > 0.

Theo giả thuyết: f(0) + f(1) - 2f(2) = f(4) - f(3).

=> f(0) > f(4)

Vậy giá trị nhỏ nhất m = f(4)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 3 2018 lúc 2:17

a) Giải sách bài tập Toán 12 | Giải sbt Toán 12

f′(x) > 0 trên khoảng (-4; 0) và f’(x) < 0 trên khoảng (0; 4).

Hàm số đạt cực đại tại x = 0 và f C Đ  = 5

Mặt khác, ta có f(-4) = f(4) = 3

Vậy Giải sách bài tập Toán 12 | Giải sbt Toán 12

d) f(x) = | x 2  − 3x + 2| trên đoạn [-10; 10]

Khảo sát sự biến thiên và vẽ đồ thị của hàm số g(x) = x 2  – 3x + 2.

Ta có:

g′(x) = 2x − 3; g′(x) = 0 ⇔ x = 3/2

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

nên ta có đồ thị f(x) như sau:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đồ thị suy ra: min f(x) = f(1) = f(2) = 0; max = f(x) = f(−10) = 132

e) Giải sách bài tập Toán 12 | Giải sbt Toán 12

f′(x) < 0 nên và f’(x) > 0 trên (π/2; 5π/6] nên hàm số đạt cực tiểu tại x = π/2 và f C T  = f(π/2) = 1

Mặt khác, f(π/3) = 2√3, f(5π/6) = 2

Vậy min f(x) = 1; max f(x) = 2

g) f(x) = 2sinx + sin2x trên đoạn [0; 3π/2]

f′(x) = 2cosx + 2cos2x = 4cos(x/2).cos3(x/2)

f′(x) = 0

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có: f(0) = 0,

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó ta có: min f(x) = −2 ; max f(x) = 3√3/2

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 4 2017 lúc 11:42

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 8 2018 lúc 13:17

Chọn C

Ta có 

Bảng biến thiên của hàm số y = f(x) trên đoạn [0;4]

Từ bảng biến thiên ta thấy giá trị lớn nhất của hàm số f(x) trên đoạn [0;4] là f(3).

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 3 2019 lúc 7:32

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 4 2019 lúc 15:08

Chọn D

Ta có 

Bảng biến thiên

Dựa vào BBT ta suy ra 

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 6 2017 lúc 18:27

Chọn C

Tập xác định của hàm số là ℝ .

Ta có: 

Vì trên khoảng  - 4 3 ; 0  hàm số đạt giá trị lớn nhất tại x = -1 nên hàm số đạt cực trị tại x = -1( cũng là điểm cực đại của hàm số) và a > 0.

Khi đó f'(x) = 0 ( đều là các nghiệm đơn)

Hàm số đạt cực đại tại x = -1 nên có bảng biến thiên:

=> x = - 3 2 là điểm cực tiểu duy nhất thuộc  - 2 ; - 5 4  

Vậy hàm số đạt giá trị nhỏ nhất tại x =  - 3 2  trên đoạn  - 2 ; - 5 4

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 7 2018 lúc 3:07