tính tổng N= 1+1/3+1/3^2+1/3^3+1/3^3+.....+1/3^100+1/2.3^100
tính tổng : 1+(1+2)+(1+2+3)+(1+2+3+4)+...+(1+2+3+4...+100)
1.2+2.3+3.4+...+99.100
ta có 1+(1+2)+(1+2+3)+...+(1+2+3+...+100)
=4+(1+3).3/2+9+(1+4).4/2+...+(1+100).100/2
=1/2(1.2+2.3+.....+100.101)
=>1/2.100.101.102
con cái dưới thì bằng 99.100.101
=>F=51/99
ngu rua mà ko biet lam
2/2*1+3/2*2+4/2*3+5/2*4+6/2*5+....101/2*100=1/2*(2*1+3*2+4*3+5*4+...100*101)=
tính tổng :F=\(\frac{\text{1+(1+2)+(1+2+3)+...+(1+2+3+...+100)}}{\text{1.2+2.3+...+99.100}}\)
Tính Tổng
A=1+6+11+16+21+.....+101
B=1.2+2.3+3.4+....+98.99
C=\(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+.....+\frac{1}{3^{100}}\)
*) A=1+6+11+16+21+....+101
Dãy trên có: \(\left(101-1\right):5+1=21\)(số số hạng)
\(\Rightarrow A=\frac{\left(101+1\right)\cdot21}{2}=1071\)
*) Đặt C=\(1^2+2^2+3^2+....+98^2=1\cdot1+2\cdot2+3\cdot3+....+98\cdot98\)
\(\Rightarrow B-C=\left(1\cdot2+2\cdot3+3\cdot4+....+98\cdot99\right)-\left(1\cdot1+2\cdot2+3\cdot3+....+98\cdot98\right)\)
\(=\left(1\cdot2-1\cdot1\right)+\left(2\cdot3-2\cdot2\right)+\left(3\cdot4-3\cdot3\right)+.....+\left(98\cdot99-98\cdot98\right)\)
\(=1\left(2-1\right)+2\left(3-2\right)+3\left(4-3\right)+....+98\left(99-1\right)\)
\(=1\cdot1+2\cdot1+3\cdot1+....+98\cdot1\)
\(=1+2+3+....+98\)
\(=\frac{\left(98+1\right)\cdot98}{2}=4851\)
A = 1 + 6 + 11 + 16 +21 +... + 101
Số chữ số của tổng A là :
( 101 - 1 ) : 5 + 1 = 21 (số)
Tổng A = 1 + 6 + ... + 101 = (101 + 1) . 21 : 2 = 1071
B = 1.2 + 2.3 +3.4 + ... + 98.99
3B = 1.2.3 + 2.3.3 +... + 98.99.3
3B = 1.2.3 + 2.3.(4 - 1) + ... + 98.99.(100 - 97)
3B = 1.2.3 + 2.3.4 - 1.2.3 + ... + 98.99.100 - 97.98.99
3B = 98.99.100
B = 323400
\(C=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
\(3C=3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
\(4C=3C+C=3+\frac{1}{3^{100}}\)
\(C=\frac{3^{101}+1}{4.3^{100}}\)
tính tổng sau
A=1+2+3+...+99+100
B=1+3+5+...+97+99
C=2+4+6+...+98+100
S=1+2+2 mũ 2+2 mũ 3+...+2 mũ 9
M=1+3+3 mũ 2+3 mũ 3+3 mũ 9
P=1.2+2.3+3,4+...+98.99
1) Từ 1 đến 100 có tất cả 100 số số hạng
=> 1+2+3+....+99+100=\(\frac{\left(100+1\right)\cdot100}{2}=5050\)
=> A=5050
2) Từ 1 đến 99 có tất cả: (99-1) : 2 +1=50 số hạng
=> 1+3+5+7+....+97+99=\(\frac{\left(99+1\right)\cdot50}{2}=2500\)
=> B=250
3) làm tương tự
4) S=\(1+2+2^2+2^3+...+2^9\)
\(2S=2+2^2+2^3+2^4+....+2^{10}\)
\(2S-S=2^{10}-1\)
\(\Rightarrow S=2^{10}-1\)
5) làm tương tự
A=1+2+3+...+99+100
Số số hạng của dãyA là:
(100-1):1+1=100(số hạng)
Tổng của dãy A là :
(100+1).100:2=5050
B=1+3+5+...+97+99
Số số hạng của dãy B là:
(99-1):2+1=50 (số hạng)
Tổng của dãy B là:
(99+1).50:2=250
C=2+4+6+...+98+100
Số số hạng của dãy C là:
(100-2):2+1=50(số hạng)
Tổng của dãy C là:
(100+2).50:2=2550
S=1+2+22+23+...+29
2S= 2+22+23+...+29+210
2S-S=1-210
S=1-210
M=1+3+32+33+...+39
3M=3+32+33+...+39+310
3M-M=1-310
2M=1-310
M=(1-310):2
c) Đặt \(A=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)
Ta có: \(A=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)
\(\Leftrightarrow3A=3\cdot\left(1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\right)\)
\(\Leftrightarrow3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+99\cdot100\cdot\left(101-98\right)\)
\(\Leftrightarrow3\cdot A=1\cdot2\cdot3-1\cdot2\cdot3+2\cdot3\cdot4-2\cdot3\cdot4+...+98\cdot99\cdot100-98\cdot99\cdot100+99\cdot100\cdot101\)
\(\Leftrightarrow3\cdot A=99\cdot100\cdot101\)
\(\Leftrightarrow A=33\cdot100\cdot101=333300\)
b) Ta có: \(1+2-3-4+...+97+98-99-100\)
\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(97+98-99-100\right)\)
\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)\)
\(=-4\cdot25=-100\)
\(F=\frac{1+\frac{1.2}{2}+\frac{3.4}{2}+...+\frac{100.101}{2}}{1.2+2.3+...+99.100}\)
\(=\frac{1+1.2+3.4+...+100.101}{\left(1.2+2.3+...+99.100\right).2}\)
Tự làm tiếp nhá !
Tính
A= ( 100-1 ) . ( 100-2 ) . ( 100-3 ) . ( 100- ( n-1) ) . ( 100 - n ) n thuộc N
B= 1.2 + 2.3 + 3.4 + .... + 99.100
a) không biết
b) B = 1.2 + 2.3 + 3.4 + ... + 99.100
3.B = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3
= 1.2.3 + 2.3.(4-1) + 3.4.(5-2) + ... + 99.100.(101-98)
= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.100.101
= 99.100.101 = 999900
3.B = 999900
B = 333300
1) tính nhanh: 1/3 +1/32 +1/34 +...1/320
b) tính tổng 100 số hạng đầu tiên: 1/1.2;1/2.3:1/3.4:...1/99.100
c)tính tổng 200 số hạng : 1/6;1/66;1/176;1/336;...
giúp mik với!m.n
Tính tổng 100-(1+1/2+1/3+1/4+...+1/100)/1/2+2/3+3/4+....+99/100
A = \(\dfrac{100-(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{100})}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{99}{100}}\)
Xét các mẫu số của dãy phân số : \(\dfrac{1}{1};\dfrac{1}{2};....;\dfrac{1}{100}\)
ta có dãy số: 1; 2; ....;100
Dãy số trên có số số hạng là: ( 100 - 1) : 1 + 1 = 100 (số)
Tách 100 thành tổng của 100 số 1 rồi nhóm lần lượt 1 với từng phân số thuộc dãy phân số trên khi đó ta có:
A = \(\dfrac{100-(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{100})}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+.....+\dfrac{99}{100}}\)
A = \(\dfrac{(1-1)+(1-\dfrac{1}{2})+(1-\dfrac{1}{3})+....+(1-\dfrac{1}{100})}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+.....+\dfrac{99}{100}}\)
A = \(\dfrac{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+....+\dfrac{99}{100}}\)
A = 1