Cho hình chóp đều S.ABC có cạnh đáy bằng a . Gọi M , N lần lượt là trung điểm của SA và SC. Biết rằng BM vuông góc với AN . Thể tích khối chóp S.ABC bằng:
A. 14 a 3 8
B. 3 a 3 4
C. 3 a 3 12
D. 14 a 3 24
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy, mặt bên (SBC) tạo với đáy 1 góc bằng 60 ∘ . Gọi M, N lần lượt là trung điểm của SB và SC Thể tích V của khối chóp S.AMN?
A. V = a 3 2
B. V = a 3 4
C. V = a 3 3 32
D. V = a 3 3 8
Đáp án D
Gọi d là tiếp tuyến của (C) tại điểm A(1:0).
Ta có: y ' = 3 x 2 − 6 x ⇒ y ' 1 = 3.
Suy ra: d : − 3 x − 1 + 0 ⇔ y = − 3 x + 3.
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt đáy. Gọi M là trung điểm của BC. Mặt phẳng (P) đi qua A và vuông góc với SM cắt SB, SC lần lượt tại E, F. Biết Tính thể tích V của khối chóp S.ABC
Cho hình chóp đều S.ABC có đáy là tam giác đều cạnh a. Gọi E, F lần lượt là trung điểm của các cạnh SB, SC. Biết mặt phẳng (AEF) vuông góc với mặt phẳng (SBC). Thể tích khối chóp S.ABC bằng
A. a 3 5 24
B. a 3 5 8
C. a 3 4 24
D. a 3 6 12
Đáp án A
Gọi O là tâm của tam giác ABC, Vì I, M lần lượt là trung điểm của EF, BC
Theo bài ra, ta có cân tại A
Do đó
Vậy
Cho hình chóp đều S.ABC có đáy là tam giác đều cạnh a. Gọi E, F lần lượt là trung điểm của các cạnh SB, SC. Biết mặt phẳng (AEF) vuông góc với mặt phẳng (SBC). Thể tích khối chóp S.ABC bằng
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt đáy. Gọi M là trung điểm của BC. Mặt phẳng (P) đi qua A và vuông góc với SM cắt SB, SC lần lượt tại E, F. Biết V S . A E F = V S . A B C . Tính thể tích V của khối chóp S.ABC.
A. a 3 2
B. a 3 8
C. 2 a 3 5
D. a 3 12
Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a. Gọi M,N lần lượt là trung điểm của SB,SC. Tính thể tích khối chóp ABCMN. Biết mặt phẳng (AMN) vuông góc với mặt phẳng (SBC).
A. 2 a 3 16
B. 2 a 3 8
C. 3 2 a 3 16
D. 2 a 3 12
Đáp án A
Gọi H là trọng tâm tam giác ABC
Vì
Cho hình chóp đều S.ABC có đáy là tam giác đều cạnh a. Gọi M, N lần lượt là trung điểm của SB, SC. Biết A M N ⊥ S B C . Thể tích của khối chóp S.ABC bằng
Cho hình chóp đều S.ABC có đáy là tam giác đều cạnh a. Gọi M, N lần lượt là trung điểm của SB, SC. Biết A M N ⊥ S B C . Thể tích của khối chóp S.ABC bằng
A. a 3 26 24
B. a 3 5 24
C. a 3 5 8
D. a 3 13 18
Cho hình chóp đều S.ABC, có đáy là tam giác đều cạnh bằng a. gọi M, N lần lượt là trung điểm của các cạnh SB, SC. Biết mặt phẳng (AMN) vuông góc với mặt phẳng (SBC). Tính thể tích của khối chóp A.BCNM.
Gọi H là trung điểm MN \(\Rightarrow SH\perp MN\)
Do chóp SABC đều \(\Rightarrow\Delta AMN\) cân tại A \(\Rightarrow AH\perp MN\Rightarrow AH\perp\left(SBC\right)\)
\(\Rightarrow AH\perp SH\)
Nối SH kéo dài cắt BC tại P \(\Rightarrow\) P là trung điểm BC đồng thời H là trung điểm SP (Talet)
\(\Rightarrow\) AH là đường cao đồng thời là trung tuyến trong tam giác SAP
\(\Rightarrow\Delta SAP\) cân tại A
\(\Rightarrow SA=AP=\dfrac{a\sqrt{3}}{2}\)
\(SH=\dfrac{1}{2}\sqrt{SB^2-BP^2}=\dfrac{1}{2}\sqrt{SA^2-\left(\dfrac{a}{2}\right)^2}=\dfrac{a\sqrt{2}}{4}\)
\(MN=\dfrac{1}{2}BC=\dfrac{a}{2}\) ; \(HP=SH=\dfrac{a\sqrt{2}}{4}\)
\(AH=\sqrt{SA^2-SH^2}=\dfrac{a\sqrt{10}}{4}\)
\(V=\dfrac{1}{3}AH.\dfrac{1}{2}\left(MN+BC\right).HP=...\)