Giải phương trình: \(9x^2-1=\left(3x+1\right)\left(4x+1\right)\)
\(9x^2-1=\left(3x+1\right)\left(4x+1\right)\)
Giải phương trình
\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(4x+1\right)=0\)
=>(3x+1)(3x-1-4x-1)=0
=>(3x+1)(x+2)=0
=>x=-1/3 hoặc x=-2
\(9x^2-1=\left(3x+1\right)\left(4x+1\right)< =>\left(3x+1\right)\left(3x-1\right)-\left(3x+1\right)\left(4x+1\right)< =>\left(3x+1\right)\left(3x-1-4x-1\right)=0< =>\left(3x+1\right)\left(-x-2\right)=0< =>\left[{}\begin{matrix}3x+1=0\\-x-2=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-2\end{matrix}\right.\)
Vậy .......
giải phương trình
\(\left(2x+1\right)\left(2+\sqrt{4x^2+4x+1}\right)+3x\left(2x+\sqrt{9x^2+3}\right)=0\)
\(pt\Leftrightarrow3x\left(2+\sqrt{\left(3x\right)^2+3}\right)=-\left(2x+1\right)\)\(\left(2+\sqrt{\left(2x+1\right)^2+3}\right)\)
Nếu 3x = - (2x + 1)\(\Leftrightarrow x=-\frac{1}{5}\)thì các biểu thức trong căn của hai vế bằng nhau.Vậy \(x=-\frac{1}{5}\)là 1 nghiệm của phương trình.
Hơn nữa, nghiệm của pt nằm trong khoảng \(\left(\frac{-1}{2};0\right)\).Ta chứng minh đó là nghiệm duy nhất.
Với \(-\frac{1}{2}< x< -\frac{1}{5}:3x< -2x-1< 0\)
\(\Rightarrow\left(3x\right)^2>\left(2x+1\right)^2\)\(\Rightarrow2+\sqrt{\left(3x\right)^2+3}>2+\sqrt{\left(2x+1\right)^2+3}\)
Suy ra \(3x\left(2+\sqrt{\left(3x\right)^2+3}\right)+\left(2x+1\right)\)\(\left(2+\sqrt{\left(2x+1\right)^2+3}\right)>0\)pt không có nghiệm nằm trong khoảng này.CMTT: ta cũng đi đến kết luận pt không có nghiệm khi \(-\frac{1}{2}< x< -\frac{1}{5}\)
Vậy nghiệm duy nhất của phương trình là \(\frac{-1}{5}\)
PT tương đương
\(\left(2x+1\right)\left(2+\sqrt{\left(2x+1\right)^2+3}\right)=-3x\left(2+\sqrt{\left(-3x\right)^2+3}\right)\)
\(\Leftrightarrow f\left(2x+1\right)=f\left(-3x\right)\)
Trong đó \(f\left(t\right)=t\left(2+\sqrt{t^2+3}\right)\)là hàm đồng biến và liên tục trong R. Phương trình trở thành
\(f\left(2x+1\right)=f\left(-3x\right)\Leftrightarrow2x+1=-3x\Leftrightarrow x=\frac{-1}{5}\)là nghiệm duy nhất
Giải phương trình: \(\left(\sqrt{4x^4-12x^3+9x^2+16}-2x^2+3x\right)\left(\sqrt{x+3}+\sqrt{x-1}\right)=8\)
ĐKXĐ: \(x\ge1\).
Phương trình đã cho tương đương:
\(\sqrt{x+3}+\sqrt{x-1}=\dfrac{8}{\sqrt{4x^4-12x^3+9x^2+16}-\left(2x^2-3x\right)}\)
\(\Leftrightarrow\sqrt{x+3}+\sqrt{x-1}=\dfrac{\sqrt{4x^4-12x^3+9x^2+16}+\left(2x^2-3x\right)}{2}\)
\(\Leftrightarrow\sqrt{4x^4-12x^3+9x^2+16}+\left(2x^2-3x\right)-2\sqrt{x+3}-2\sqrt{x-1}=0\)
\(\Leftrightarrow\left(\sqrt{4x^4-12x^3+9x^2+16}-2\sqrt{x+3}\right)+\left(2x^2-3x-2\sqrt{x-1}\right)=0\)
\(\Leftrightarrow\dfrac{4x^4-12x^3+9x^2-4x+4}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{4x^4-12x^3+9x^2-4x+4}{2x^2-3x+2\sqrt{x-1}}=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x^3-4x^2+x-2\right)\left(\dfrac{1}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{1}{2x^2-3x+2\sqrt{x-1}}\right)=0\).
Do \(x\ge1\) nên ta có \(\dfrac{1}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{1}{2x^2-3x+2\sqrt{x-1}}>0\).
Do đó \(\left[{}\begin{matrix}x-2=0\Leftrightarrow x=2\left(TMĐK\right)\\4x^3-4x^2+x-2=0\left(1\right)\end{matrix}\right.\).
Giải phương trình bậc 3 ở (1) ta được \(x=\dfrac{\sqrt[3]{36\sqrt{13}+53\sqrt{6}}}{\sqrt[6]{279936}}+\dfrac{1}{\sqrt[6]{7776}\sqrt[3]{36\sqrt{13}+53\sqrt{6}}}+\dfrac{1}{3}\approx1,157298106\left(TMĐK\right)\).
Vậy...
Vì trong bài làm của mình có một số dòng khá dài nên bạn có thể vào trang cá nhân của mình để đọc tốt hơn!
Giải các phương trình sau bằng cách đưa về phương trình tích:
a, \(9x^2-1=\left(3x+1\right)\left(2x-1\right)\)
b, \(\left(4x-3\right)^2=4\left(x^2-2x+1\right)\)
a) \(9x^2-1=\left(3x+1\right)\left(2x-1\right)\)
\(\Rightarrow\left(3x+1\right)\left(3x-1\right)=\left(3x+1\right)\left(2x-1\right)\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1\right)-\left(3x+1\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1-2x+1\right)=0\)
\(\Leftrightarrow x\left(3x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\3x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{3}\end{cases}}\)
b) \(\left(4x-3\right)^2=4\left(x^2-2x+1\right)\)
\(\Leftrightarrow16x^2-24x+9=4x^2-8x+4\)
\(\Leftrightarrow12x^2-16x+5=0\)
Ta có \(\Delta=16^2-4.12.5=16,\sqrt{\Delta}=4\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{16+4}{12}=\frac{5}{3}\\x=\frac{16-4}{12}=1\end{cases}}\)
Giải các phương trình :
\(a,\left(4x+2\right)\left(x^2+1\right)=0\)
\(b,\left(3x+2\right)\left(x^2-1\right)=\left(9x^2-4\right)\left(x+1\right)\)
a) Ta có : \(\left(4x+2\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4x+2=0\\x^2+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}4x=-2\\x^2=-1\left(loai\right)\end{cases}\Leftrightarrow}x=-2}\)
\(\left(3x+2\right).\left(x^2-1\right)=\left[\left(3x\right)^2-2^2\right].\left(x+1\right)\)
\(\Rightarrow\left(3x+2\right).\left(x-1\right).\left(x+1\right)-\left(3x-2\right).\left(3x+2\right).\left(x+1\right)=0\)
\(\Rightarrow\left(3x+2\right).\left(x+1\right).\left[x-1-3x+2\right]=0\)
\(\Rightarrow\left(3x+2\right).\left(x+1\right).\left(-2x+1\right)=0\)
đến đây dễ rồi :))
Giải Phương trình
\(3x\left(3x^2-6x-1\right)-x\left(9x^2-9x-2\right)-\left(3x+1\right)^2=33\)
Help me
Cần gấp trong hôm nay
Hãy giải phương trình sau:\(\left(x^2+3x+1\right)\left(\frac{4x-3}{3x+1}+2\right)=\left(4x+7\right)\left(\frac{4x-3}{3x+1}+2\right)\)
\(ĐK:x\ne\frac{-1}{3}\)
\(PT\Leftrightarrow\left(\frac{4x-3}{3x+1}+2\right)\left(x^2+3x+1-4x-7\right)=0\)
\(\Leftrightarrow\left(\frac{10x-1}{3x+1}\right).\left(x^2-x-6\right)=0\)
\(\Leftrightarrow\)\(x=\frac{1}{10}\)hoặc x=3 hoặc x=-2
Vậy...........
giải pt:
a,\(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)
b,\(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)
giải pt :
a,\(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)
b, \(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)